Reformulate via black

This commit is contained in:
D-X-Y
2021-03-17 09:25:58 +00:00
parent a9093e41e1
commit f98edea22a
59 changed files with 12289 additions and 8918 deletions

View File

@@ -9,336 +9,447 @@ from copy import deepcopy
import torch
import torch.nn as nn
from pathlib import Path
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from config_utils import load_config, dict2config, configure2str
from datasets import get_datasets, get_nas_search_loaders
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
from utils import get_model_infos, obtain_accuracy
from log_utils import AverageMeter, time_string, convert_secs2time
from models import get_cell_based_tiny_net, get_search_spaces
from nas_201_api import NASBench201API as API
from datasets import get_datasets, get_nas_search_loaders
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
from utils import get_model_infos, obtain_accuracy
from log_utils import AverageMeter, time_string, convert_secs2time
from models import get_cell_based_tiny_net, get_search_spaces
from nas_201_api import NASBench201API as API
def train_shared_cnn(xloader, shared_cnn, controller, criterion, scheduler, optimizer, epoch_str, print_freq, logger):
data_time, batch_time = AverageMeter(), AverageMeter()
losses, top1s, top5s, xend = AverageMeter(), AverageMeter(), AverageMeter(), time.time()
shared_cnn.train()
controller.eval()
data_time, batch_time = AverageMeter(), AverageMeter()
losses, top1s, top5s, xend = AverageMeter(), AverageMeter(), AverageMeter(), time.time()
for step, (inputs, targets) in enumerate(xloader):
scheduler.update(None, 1.0 * step / len(xloader))
targets = targets.cuda(non_blocking=True)
# measure data loading time
data_time.update(time.time() - xend)
with torch.no_grad():
_, _, sampled_arch = controller()
shared_cnn.train()
controller.eval()
optimizer.zero_grad()
shared_cnn.module.update_arch(sampled_arch)
_, logits = shared_cnn(inputs)
loss = criterion(logits, targets)
loss.backward()
torch.nn.utils.clip_grad_norm_(shared_cnn.parameters(), 5)
optimizer.step()
# record
prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1s.update (prec1.item(), inputs.size(0))
top5s.update (prec5.item(), inputs.size(0))
for step, (inputs, targets) in enumerate(xloader):
scheduler.update(None, 1.0 * step / len(xloader))
targets = targets.cuda(non_blocking=True)
# measure data loading time
data_time.update(time.time() - xend)
# measure elapsed time
batch_time.update(time.time() - xend)
xend = time.time()
with torch.no_grad():
_, _, sampled_arch = controller()
if step % print_freq == 0 or step + 1 == len(xloader):
Sstr = '*Train-Shared-CNN* ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, len(xloader))
Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time)
Wstr = '[Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=losses, top1=top1s, top5=top5s)
logger.log(Sstr + ' ' + Tstr + ' ' + Wstr)
return losses.avg, top1s.avg, top5s.avg
optimizer.zero_grad()
shared_cnn.module.update_arch(sampled_arch)
_, logits = shared_cnn(inputs)
loss = criterion(logits, targets)
loss.backward()
torch.nn.utils.clip_grad_norm_(shared_cnn.parameters(), 5)
optimizer.step()
# record
prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1s.update(prec1.item(), inputs.size(0))
top5s.update(prec5.item(), inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - xend)
xend = time.time()
if step % print_freq == 0 or step + 1 == len(xloader):
Sstr = "*Train-Shared-CNN* " + time_string() + " [{:}][{:03d}/{:03d}]".format(epoch_str, step, len(xloader))
Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format(
batch_time=batch_time, data_time=data_time
)
Wstr = "[Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format(
loss=losses, top1=top1s, top5=top5s
)
logger.log(Sstr + " " + Tstr + " " + Wstr)
return losses.avg, top1s.avg, top5s.avg
def train_controller(xloader, shared_cnn, controller, criterion, optimizer, config, epoch_str, print_freq, logger):
# config. (containing some necessary arg)
# baseline: The baseline score (i.e. average val_acc) from the previous epoch
data_time, batch_time = AverageMeter(), AverageMeter()
GradnormMeter, LossMeter, ValAccMeter, EntropyMeter, BaselineMeter, RewardMeter, xend = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), time.time()
shared_cnn.eval()
controller.train()
controller.zero_grad()
#for step, (inputs, targets) in enumerate(xloader):
loader_iter = iter(xloader)
for step in range(config.ctl_train_steps * config.ctl_num_aggre):
try:
inputs, targets = next(loader_iter)
except:
loader_iter = iter(xloader)
inputs, targets = next(loader_iter)
targets = targets.cuda(non_blocking=True)
# measure data loading time
data_time.update(time.time() - xend)
log_prob, entropy, sampled_arch = controller()
with torch.no_grad():
shared_cnn.module.update_arch(sampled_arch)
_, logits = shared_cnn(inputs)
val_top1, val_top5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
val_top1 = val_top1.view(-1) / 100
reward = val_top1 + config.ctl_entropy_w * entropy
if config.baseline is None:
baseline = val_top1
else:
baseline = config.baseline - (1 - config.ctl_bl_dec) * (config.baseline - reward)
loss = -1 * log_prob * (reward - baseline)
# account
RewardMeter.update(reward.item())
BaselineMeter.update(baseline.item())
ValAccMeter.update(val_top1.item()*100)
LossMeter.update(loss.item())
EntropyMeter.update(entropy.item())
# Average gradient over controller_num_aggregate samples
loss = loss / config.ctl_num_aggre
loss.backward(retain_graph=True)
# config. (containing some necessary arg)
# baseline: The baseline score (i.e. average val_acc) from the previous epoch
data_time, batch_time = AverageMeter(), AverageMeter()
GradnormMeter, LossMeter, ValAccMeter, EntropyMeter, BaselineMeter, RewardMeter, xend = (
AverageMeter(),
AverageMeter(),
AverageMeter(),
AverageMeter(),
AverageMeter(),
AverageMeter(),
time.time(),
)
# measure elapsed time
batch_time.update(time.time() - xend)
xend = time.time()
if (step+1) % config.ctl_num_aggre == 0:
grad_norm = torch.nn.utils.clip_grad_norm_(controller.parameters(), 5.0)
GradnormMeter.update(grad_norm)
optimizer.step()
controller.zero_grad()
shared_cnn.eval()
controller.train()
controller.zero_grad()
# for step, (inputs, targets) in enumerate(xloader):
loader_iter = iter(xloader)
for step in range(config.ctl_train_steps * config.ctl_num_aggre):
try:
inputs, targets = next(loader_iter)
except:
loader_iter = iter(xloader)
inputs, targets = next(loader_iter)
targets = targets.cuda(non_blocking=True)
# measure data loading time
data_time.update(time.time() - xend)
if step % print_freq == 0:
Sstr = '*Train-Controller* ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, config.ctl_train_steps * config.ctl_num_aggre)
Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time)
Wstr = '[Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Reward {reward.val:.2f} ({reward.avg:.2f})] Baseline {basel.val:.2f} ({basel.avg:.2f})'.format(loss=LossMeter, top1=ValAccMeter, reward=RewardMeter, basel=BaselineMeter)
Estr = 'Entropy={:.4f} ({:.4f})'.format(EntropyMeter.val, EntropyMeter.avg)
logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Estr)
log_prob, entropy, sampled_arch = controller()
with torch.no_grad():
shared_cnn.module.update_arch(sampled_arch)
_, logits = shared_cnn(inputs)
val_top1, val_top5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
val_top1 = val_top1.view(-1) / 100
reward = val_top1 + config.ctl_entropy_w * entropy
if config.baseline is None:
baseline = val_top1
else:
baseline = config.baseline - (1 - config.ctl_bl_dec) * (config.baseline - reward)
return LossMeter.avg, ValAccMeter.avg, BaselineMeter.avg, RewardMeter.avg, baseline.item()
loss = -1 * log_prob * (reward - baseline)
# account
RewardMeter.update(reward.item())
BaselineMeter.update(baseline.item())
ValAccMeter.update(val_top1.item() * 100)
LossMeter.update(loss.item())
EntropyMeter.update(entropy.item())
# Average gradient over controller_num_aggregate samples
loss = loss / config.ctl_num_aggre
loss.backward(retain_graph=True)
# measure elapsed time
batch_time.update(time.time() - xend)
xend = time.time()
if (step + 1) % config.ctl_num_aggre == 0:
grad_norm = torch.nn.utils.clip_grad_norm_(controller.parameters(), 5.0)
GradnormMeter.update(grad_norm)
optimizer.step()
controller.zero_grad()
if step % print_freq == 0:
Sstr = (
"*Train-Controller* "
+ time_string()
+ " [{:}][{:03d}/{:03d}]".format(epoch_str, step, config.ctl_train_steps * config.ctl_num_aggre)
)
Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format(
batch_time=batch_time, data_time=data_time
)
Wstr = "[Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Reward {reward.val:.2f} ({reward.avg:.2f})] Baseline {basel.val:.2f} ({basel.avg:.2f})".format(
loss=LossMeter, top1=ValAccMeter, reward=RewardMeter, basel=BaselineMeter
)
Estr = "Entropy={:.4f} ({:.4f})".format(EntropyMeter.val, EntropyMeter.avg)
logger.log(Sstr + " " + Tstr + " " + Wstr + " " + Estr)
return LossMeter.avg, ValAccMeter.avg, BaselineMeter.avg, RewardMeter.avg, baseline.item()
def get_best_arch(controller, shared_cnn, xloader, n_samples=10):
with torch.no_grad():
controller.eval()
shared_cnn.eval()
archs, valid_accs = [], []
loader_iter = iter(xloader)
for i in range(n_samples):
try:
inputs, targets = next(loader_iter)
except:
with torch.no_grad():
controller.eval()
shared_cnn.eval()
archs, valid_accs = [], []
loader_iter = iter(xloader)
inputs, targets = next(loader_iter)
for i in range(n_samples):
try:
inputs, targets = next(loader_iter)
except:
loader_iter = iter(xloader)
inputs, targets = next(loader_iter)
_, _, sampled_arch = controller()
arch = shared_cnn.module.update_arch(sampled_arch)
_, logits = shared_cnn(inputs)
val_top1, val_top5 = obtain_accuracy(logits.cpu().data, targets.data, topk=(1, 5))
_, _, sampled_arch = controller()
arch = shared_cnn.module.update_arch(sampled_arch)
_, logits = shared_cnn(inputs)
val_top1, val_top5 = obtain_accuracy(logits.cpu().data, targets.data, topk=(1, 5))
archs.append( arch )
valid_accs.append( val_top1.item() )
archs.append(arch)
valid_accs.append(val_top1.item())
best_idx = np.argmax(valid_accs)
best_arch, best_valid_acc = archs[best_idx], valid_accs[best_idx]
return best_arch, best_valid_acc
best_idx = np.argmax(valid_accs)
best_arch, best_valid_acc = archs[best_idx], valid_accs[best_idx]
return best_arch, best_valid_acc
def valid_func(xloader, network, criterion):
data_time, batch_time = AverageMeter(), AverageMeter()
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
network.eval()
end = time.time()
with torch.no_grad():
for step, (arch_inputs, arch_targets) in enumerate(xloader):
arch_targets = arch_targets.cuda(non_blocking=True)
# measure data loading time
data_time.update(time.time() - end)
# prediction
_, logits = network(arch_inputs)
arch_loss = criterion(logits, arch_targets)
# record
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
arch_top1.update (arch_prec1.item(), arch_inputs.size(0))
arch_top5.update (arch_prec5.item(), arch_inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
return arch_losses.avg, arch_top1.avg, arch_top5.avg
data_time, batch_time = AverageMeter(), AverageMeter()
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
network.eval()
end = time.time()
with torch.no_grad():
for step, (arch_inputs, arch_targets) in enumerate(xloader):
arch_targets = arch_targets.cuda(non_blocking=True)
# measure data loading time
data_time.update(time.time() - end)
# prediction
_, logits = network(arch_inputs)
arch_loss = criterion(logits, arch_targets)
# record
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
arch_top1.update(arch_prec1.item(), arch_inputs.size(0))
arch_top5.update(arch_prec5.item(), arch_inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
return arch_losses.avg, arch_top1.avg, arch_top5.avg
def main(xargs):
assert torch.cuda.is_available(), 'CUDA is not available.'
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.set_num_threads( xargs.workers )
prepare_seed(xargs.rand_seed)
logger = prepare_logger(args)
assert torch.cuda.is_available(), "CUDA is not available."
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.set_num_threads(xargs.workers)
prepare_seed(xargs.rand_seed)
logger = prepare_logger(args)
train_data, test_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
logger.log('use config from : {:}'.format(xargs.config_path))
config = load_config(xargs.config_path, {'class_num': class_num, 'xshape': xshape}, logger)
_, train_loader, valid_loader = get_nas_search_loaders(train_data, test_data, xargs.dataset, 'configs/nas-benchmark/', config.batch_size, xargs.workers)
# since ENAS will train the controller on valid-loader, we need to use train transformation for valid-loader
valid_loader.dataset.transform = deepcopy(train_loader.dataset.transform)
if hasattr(valid_loader.dataset, 'transforms'):
valid_loader.dataset.transforms = deepcopy(train_loader.dataset.transforms)
# data loader
logger.log('||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size))
logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
train_data, test_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
logger.log("use config from : {:}".format(xargs.config_path))
config = load_config(xargs.config_path, {"class_num": class_num, "xshape": xshape}, logger)
_, train_loader, valid_loader = get_nas_search_loaders(
train_data, test_data, xargs.dataset, "configs/nas-benchmark/", config.batch_size, xargs.workers
)
# since ENAS will train the controller on valid-loader, we need to use train transformation for valid-loader
valid_loader.dataset.transform = deepcopy(train_loader.dataset.transform)
if hasattr(valid_loader.dataset, "transforms"):
valid_loader.dataset.transforms = deepcopy(train_loader.dataset.transforms)
# data loader
logger.log(
"||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}".format(
xargs.dataset, len(train_loader), len(valid_loader), config.batch_size
)
)
logger.log("||||||| {:10s} ||||||| Config={:}".format(xargs.dataset, config))
search_space = get_search_spaces('cell', xargs.search_space_name)
model_config = dict2config({'name': 'ENAS', 'C': xargs.channel, 'N': xargs.num_cells,
'max_nodes': xargs.max_nodes, 'num_classes': class_num,
'space' : search_space,
'affine' : False, 'track_running_stats': bool(xargs.track_running_stats)}, None)
shared_cnn = get_cell_based_tiny_net(model_config)
controller = shared_cnn.create_controller()
w_optimizer, w_scheduler, criterion = get_optim_scheduler(shared_cnn.parameters(), config)
a_optimizer = torch.optim.Adam(controller.parameters(), lr=config.controller_lr, betas=config.controller_betas, eps=config.controller_eps)
logger.log('w-optimizer : {:}'.format(w_optimizer))
logger.log('a-optimizer : {:}'.format(a_optimizer))
logger.log('w-scheduler : {:}'.format(w_scheduler))
logger.log('criterion : {:}'.format(criterion))
#flop, param = get_model_infos(shared_cnn, xshape)
#logger.log('{:}'.format(shared_cnn))
#logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param))
logger.log('search-space : {:}'.format(search_space))
if xargs.arch_nas_dataset is None:
api = None
else:
api = API(xargs.arch_nas_dataset)
logger.log('{:} create API = {:} done'.format(time_string(), api))
shared_cnn, controller, criterion = torch.nn.DataParallel(shared_cnn).cuda(), controller.cuda(), criterion.cuda()
search_space = get_search_spaces("cell", xargs.search_space_name)
model_config = dict2config(
{
"name": "ENAS",
"C": xargs.channel,
"N": xargs.num_cells,
"max_nodes": xargs.max_nodes,
"num_classes": class_num,
"space": search_space,
"affine": False,
"track_running_stats": bool(xargs.track_running_stats),
},
None,
)
shared_cnn = get_cell_based_tiny_net(model_config)
controller = shared_cnn.create_controller()
last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best')
w_optimizer, w_scheduler, criterion = get_optim_scheduler(shared_cnn.parameters(), config)
a_optimizer = torch.optim.Adam(
controller.parameters(), lr=config.controller_lr, betas=config.controller_betas, eps=config.controller_eps
)
logger.log("w-optimizer : {:}".format(w_optimizer))
logger.log("a-optimizer : {:}".format(a_optimizer))
logger.log("w-scheduler : {:}".format(w_scheduler))
logger.log("criterion : {:}".format(criterion))
# flop, param = get_model_infos(shared_cnn, xshape)
# logger.log('{:}'.format(shared_cnn))
# logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param))
logger.log("search-space : {:}".format(search_space))
if xargs.arch_nas_dataset is None:
api = None
else:
api = API(xargs.arch_nas_dataset)
logger.log("{:} create API = {:} done".format(time_string(), api))
shared_cnn, controller, criterion = torch.nn.DataParallel(shared_cnn).cuda(), controller.cuda(), criterion.cuda()
if last_info.exists(): # automatically resume from previous checkpoint
logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info))
last_info = torch.load(last_info)
start_epoch = last_info['epoch']
checkpoint = torch.load(last_info['last_checkpoint'])
genotypes = checkpoint['genotypes']
baseline = checkpoint['baseline']
valid_accuracies = checkpoint['valid_accuracies']
shared_cnn.load_state_dict( checkpoint['shared_cnn'] )
controller.load_state_dict( checkpoint['controller'] )
w_scheduler.load_state_dict ( checkpoint['w_scheduler'] )
w_optimizer.load_state_dict ( checkpoint['w_optimizer'] )
a_optimizer.load_state_dict ( checkpoint['a_optimizer'] )
logger.log("=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch))
else:
logger.log("=> do not find the last-info file : {:}".format(last_info))
start_epoch, valid_accuracies, genotypes, baseline = 0, {'best': -1}, {}, None
last_info, model_base_path, model_best_path = logger.path("info"), logger.path("model"), logger.path("best")
# start training
start_time, search_time, epoch_time, total_epoch = time.time(), AverageMeter(), AverageMeter(), config.epochs + config.warmup
for epoch in range(start_epoch, total_epoch):
w_scheduler.update(epoch, 0.0)
need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.val * (total_epoch-epoch), True) )
epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch)
logger.log('\n[Search the {:}-th epoch] {:}, LR={:}, baseline={:}'.format(epoch_str, need_time, min(w_scheduler.get_lr()), baseline))
if last_info.exists(): # automatically resume from previous checkpoint
logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info))
last_info = torch.load(last_info)
start_epoch = last_info["epoch"]
checkpoint = torch.load(last_info["last_checkpoint"])
genotypes = checkpoint["genotypes"]
baseline = checkpoint["baseline"]
valid_accuracies = checkpoint["valid_accuracies"]
shared_cnn.load_state_dict(checkpoint["shared_cnn"])
controller.load_state_dict(checkpoint["controller"])
w_scheduler.load_state_dict(checkpoint["w_scheduler"])
w_optimizer.load_state_dict(checkpoint["w_optimizer"])
a_optimizer.load_state_dict(checkpoint["a_optimizer"])
logger.log(
"=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch)
)
else:
logger.log("=> do not find the last-info file : {:}".format(last_info))
start_epoch, valid_accuracies, genotypes, baseline = 0, {"best": -1}, {}, None
cnn_loss, cnn_top1, cnn_top5 = train_shared_cnn(train_loader, shared_cnn, controller, criterion, w_scheduler, w_optimizer, epoch_str, xargs.print_freq, logger)
logger.log('[{:}] shared-cnn : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, cnn_loss, cnn_top1, cnn_top5))
ctl_loss, ctl_acc, ctl_baseline, ctl_reward, baseline \
= train_controller(valid_loader, shared_cnn, controller, criterion, a_optimizer, \
dict2config({'baseline': baseline,
'ctl_train_steps': xargs.controller_train_steps, 'ctl_num_aggre': xargs.controller_num_aggregate,
'ctl_entropy_w': xargs.controller_entropy_weight,
'ctl_bl_dec' : xargs.controller_bl_dec}, None), \
epoch_str, xargs.print_freq, logger)
search_time.update(time.time() - start_time)
logger.log('[{:}] controller : loss={:.2f}, accuracy={:.2f}%, baseline={:.2f}, reward={:.2f}, current-baseline={:.4f}, time-cost={:.1f} s'.format(epoch_str, ctl_loss, ctl_acc, ctl_baseline, ctl_reward, baseline, search_time.sum))
best_arch, _ = get_best_arch(controller, shared_cnn, valid_loader)
shared_cnn.module.update_arch(best_arch)
_, best_valid_acc, _ = valid_func(valid_loader, shared_cnn, criterion)
# start training
start_time, search_time, epoch_time, total_epoch = (
time.time(),
AverageMeter(),
AverageMeter(),
config.epochs + config.warmup,
)
for epoch in range(start_epoch, total_epoch):
w_scheduler.update(epoch, 0.0)
need_time = "Time Left: {:}".format(convert_secs2time(epoch_time.val * (total_epoch - epoch), True))
epoch_str = "{:03d}-{:03d}".format(epoch, total_epoch)
logger.log(
"\n[Search the {:}-th epoch] {:}, LR={:}, baseline={:}".format(
epoch_str, need_time, min(w_scheduler.get_lr()), baseline
)
)
genotypes[epoch] = best_arch
# check the best accuracy
valid_accuracies[epoch] = best_valid_acc
if best_valid_acc > valid_accuracies['best']:
valid_accuracies['best'] = best_valid_acc
genotypes['best'] = best_arch
find_best = True
else: find_best = False
cnn_loss, cnn_top1, cnn_top5 = train_shared_cnn(
train_loader,
shared_cnn,
controller,
criterion,
w_scheduler,
w_optimizer,
epoch_str,
xargs.print_freq,
logger,
)
logger.log(
"[{:}] shared-cnn : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%".format(
epoch_str, cnn_loss, cnn_top1, cnn_top5
)
)
ctl_loss, ctl_acc, ctl_baseline, ctl_reward, baseline = train_controller(
valid_loader,
shared_cnn,
controller,
criterion,
a_optimizer,
dict2config(
{
"baseline": baseline,
"ctl_train_steps": xargs.controller_train_steps,
"ctl_num_aggre": xargs.controller_num_aggregate,
"ctl_entropy_w": xargs.controller_entropy_weight,
"ctl_bl_dec": xargs.controller_bl_dec,
},
None,
),
epoch_str,
xargs.print_freq,
logger,
)
search_time.update(time.time() - start_time)
logger.log(
"[{:}] controller : loss={:.2f}, accuracy={:.2f}%, baseline={:.2f}, reward={:.2f}, current-baseline={:.4f}, time-cost={:.1f} s".format(
epoch_str, ctl_loss, ctl_acc, ctl_baseline, ctl_reward, baseline, search_time.sum
)
)
best_arch, _ = get_best_arch(controller, shared_cnn, valid_loader)
shared_cnn.module.update_arch(best_arch)
_, best_valid_acc, _ = valid_func(valid_loader, shared_cnn, criterion)
logger.log('<<<--->>> The {:}-th epoch : {:}'.format(epoch_str, genotypes[epoch]))
# save checkpoint
save_path = save_checkpoint({'epoch' : epoch + 1,
'args' : deepcopy(xargs),
'baseline' : baseline,
'shared_cnn' : shared_cnn.state_dict(),
'controller' : controller.state_dict(),
'w_optimizer' : w_optimizer.state_dict(),
'a_optimizer' : a_optimizer.state_dict(),
'w_scheduler' : w_scheduler.state_dict(),
'genotypes' : genotypes,
'valid_accuracies' : valid_accuracies},
model_base_path, logger)
last_info = save_checkpoint({
'epoch': epoch + 1,
'args' : deepcopy(args),
'last_checkpoint': save_path,
}, logger.path('info'), logger)
if find_best:
logger.log('<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.'.format(epoch_str, best_valid_acc))
copy_checkpoint(model_base_path, model_best_path, logger)
if api is not None: logger.log('{:}'.format(api.query_by_arch(genotypes[epoch], '200')))
# measure elapsed time
epoch_time.update(time.time() - start_time)
genotypes[epoch] = best_arch
# check the best accuracy
valid_accuracies[epoch] = best_valid_acc
if best_valid_acc > valid_accuracies["best"]:
valid_accuracies["best"] = best_valid_acc
genotypes["best"] = best_arch
find_best = True
else:
find_best = False
logger.log("<<<--->>> The {:}-th epoch : {:}".format(epoch_str, genotypes[epoch]))
# save checkpoint
save_path = save_checkpoint(
{
"epoch": epoch + 1,
"args": deepcopy(xargs),
"baseline": baseline,
"shared_cnn": shared_cnn.state_dict(),
"controller": controller.state_dict(),
"w_optimizer": w_optimizer.state_dict(),
"a_optimizer": a_optimizer.state_dict(),
"w_scheduler": w_scheduler.state_dict(),
"genotypes": genotypes,
"valid_accuracies": valid_accuracies,
},
model_base_path,
logger,
)
last_info = save_checkpoint(
{
"epoch": epoch + 1,
"args": deepcopy(args),
"last_checkpoint": save_path,
},
logger.path("info"),
logger,
)
if find_best:
logger.log(
"<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.".format(
epoch_str, best_valid_acc
)
)
copy_checkpoint(model_base_path, model_best_path, logger)
if api is not None:
logger.log("{:}".format(api.query_by_arch(genotypes[epoch], "200")))
# measure elapsed time
epoch_time.update(time.time() - start_time)
start_time = time.time()
logger.log("\n" + "-" * 100)
logger.log("During searching, the best architecture is {:}".format(genotypes["best"]))
logger.log("Its accuracy is {:.2f}%".format(valid_accuracies["best"]))
logger.log("Randomly select {:} architectures and select the best.".format(xargs.controller_num_samples))
start_time = time.time()
logger.log('\n' + '-'*100)
logger.log('During searching, the best architecture is {:}'.format(genotypes['best']))
logger.log('Its accuracy is {:.2f}%'.format(valid_accuracies['best']))
logger.log('Randomly select {:} architectures and select the best.'.format(xargs.controller_num_samples))
start_time = time.time()
final_arch, _ = get_best_arch(controller, shared_cnn, valid_loader, xargs.controller_num_samples)
search_time.update(time.time() - start_time)
shared_cnn.module.update_arch(final_arch)
final_loss, final_top1, final_top5 = valid_func(valid_loader, shared_cnn, criterion)
logger.log('The Selected Final Architecture : {:}'.format(final_arch))
logger.log('Loss={:.3f}, Accuracy@1={:.2f}%, Accuracy@5={:.2f}%'.format(final_loss, final_top1, final_top5))
logger.log('ENAS : run {:} epochs, cost {:.1f} s, last-geno is {:}.'.format(total_epoch, search_time.sum, final_arch))
if api is not None: logger.log('{:}'.format( api.query_by_arch(final_arch) ))
logger.close()
final_arch, _ = get_best_arch(controller, shared_cnn, valid_loader, xargs.controller_num_samples)
search_time.update(time.time() - start_time)
shared_cnn.module.update_arch(final_arch)
final_loss, final_top1, final_top5 = valid_func(valid_loader, shared_cnn, criterion)
logger.log("The Selected Final Architecture : {:}".format(final_arch))
logger.log("Loss={:.3f}, Accuracy@1={:.2f}%, Accuracy@5={:.2f}%".format(final_loss, final_top1, final_top5))
logger.log(
"ENAS : run {:} epochs, cost {:.1f} s, last-geno is {:}.".format(total_epoch, search_time.sum, final_arch)
)
if api is not None:
logger.log("{:}".format(api.query_by_arch(final_arch)))
logger.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser("ENAS")
parser.add_argument('--data_path', type=str, help='Path to dataset')
parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
# channels and number-of-cells
parser.add_argument('--track_running_stats',type=int, choices=[0,1],help='Whether use track_running_stats or not in the BN layer.')
parser.add_argument('--search_space_name', type=str, help='The search space name.')
parser.add_argument('--max_nodes', type=int, help='The maximum number of nodes.')
parser.add_argument('--channel', type=int, help='The number of channels.')
parser.add_argument('--num_cells', type=int, help='The number of cells in one stage.')
parser.add_argument('--config_path', type=str, help='The config file to train ENAS.')
parser.add_argument('--controller_train_steps', type=int, help='.')
parser.add_argument('--controller_num_aggregate', type=int, help='.')
parser.add_argument('--controller_entropy_weight', type=float, help='The weight for the entropy of the controller.')
parser.add_argument('--controller_bl_dec' , type=float, help='.')
parser.add_argument('--controller_num_samples' , type=int, help='.')
# log
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
parser.add_argument('--save_dir', type=str, help='Folder to save checkpoints and log.')
parser.add_argument('--arch_nas_dataset', type=str, help='The path to load the architecture dataset (nas-benchmark).')
parser.add_argument('--print_freq', type=int, help='print frequency (default: 200)')
parser.add_argument('--rand_seed', type=int, help='manual seed')
args = parser.parse_args()
if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000)
main(args)
if __name__ == "__main__":
parser = argparse.ArgumentParser("ENAS")
parser.add_argument("--data_path", type=str, help="Path to dataset")
parser.add_argument(
"--dataset",
type=str,
choices=["cifar10", "cifar100", "ImageNet16-120"],
help="Choose between Cifar10/100 and ImageNet-16.",
)
# channels and number-of-cells
parser.add_argument(
"--track_running_stats",
type=int,
choices=[0, 1],
help="Whether use track_running_stats or not in the BN layer.",
)
parser.add_argument("--search_space_name", type=str, help="The search space name.")
parser.add_argument("--max_nodes", type=int, help="The maximum number of nodes.")
parser.add_argument("--channel", type=int, help="The number of channels.")
parser.add_argument("--num_cells", type=int, help="The number of cells in one stage.")
parser.add_argument("--config_path", type=str, help="The config file to train ENAS.")
parser.add_argument("--controller_train_steps", type=int, help=".")
parser.add_argument("--controller_num_aggregate", type=int, help=".")
parser.add_argument("--controller_entropy_weight", type=float, help="The weight for the entropy of the controller.")
parser.add_argument("--controller_bl_dec", type=float, help=".")
parser.add_argument("--controller_num_samples", type=int, help=".")
# log
parser.add_argument("--workers", type=int, default=2, help="number of data loading workers (default: 2)")
parser.add_argument("--save_dir", type=str, help="Folder to save checkpoints and log.")
parser.add_argument(
"--arch_nas_dataset", type=str, help="The path to load the architecture dataset (nas-benchmark)."
)
parser.add_argument("--print_freq", type=int, help="print frequency (default: 200)")
parser.add_argument("--rand_seed", type=int, help="manual seed")
args = parser.parse_args()
if args.rand_seed is None or args.rand_seed < 0:
args.rand_seed = random.randint(1, 100000)
main(args)