Reformulate via black
This commit is contained in:
@@ -11,14 +11,17 @@ import os, sys, time, random, argparse
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
import torch
|
||||
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
||||
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
from config_utils import load_config
|
||||
from datasets import get_datasets, SearchDataset
|
||||
from procedures import prepare_seed, prepare_logger
|
||||
from log_utils import AverageMeter, time_string, convert_secs2time
|
||||
from nas_201_api import NASBench201API as API
|
||||
from models import CellStructure, get_search_spaces
|
||||
from datasets import get_datasets, SearchDataset
|
||||
from procedures import prepare_seed, prepare_logger
|
||||
from log_utils import AverageMeter, time_string, convert_secs2time
|
||||
from nas_201_api import NASBench201API as API
|
||||
from models import CellStructure, get_search_spaces
|
||||
|
||||
# BOHB: Robust and Efficient Hyperparameter Optimization at Scale, ICML 2018
|
||||
import ConfigSpace
|
||||
from hpbandster.optimizers.bohb import BOHB
|
||||
@@ -27,209 +30,258 @@ from hpbandster.core.worker import Worker
|
||||
|
||||
|
||||
def get_configuration_space(max_nodes, search_space):
|
||||
cs = ConfigSpace.ConfigurationSpace()
|
||||
#edge2index = {}
|
||||
for i in range(1, max_nodes):
|
||||
for j in range(i):
|
||||
node_str = '{:}<-{:}'.format(i, j)
|
||||
cs.add_hyperparameter(ConfigSpace.CategoricalHyperparameter(node_str, search_space))
|
||||
return cs
|
||||
cs = ConfigSpace.ConfigurationSpace()
|
||||
# edge2index = {}
|
||||
for i in range(1, max_nodes):
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
cs.add_hyperparameter(ConfigSpace.CategoricalHyperparameter(node_str, search_space))
|
||||
return cs
|
||||
|
||||
|
||||
def config2structure_func(max_nodes):
|
||||
def config2structure(config):
|
||||
genotypes = []
|
||||
for i in range(1, max_nodes):
|
||||
xlist = []
|
||||
for j in range(i):
|
||||
node_str = '{:}<-{:}'.format(i, j)
|
||||
op_name = config[node_str]
|
||||
xlist.append((op_name, j))
|
||||
genotypes.append( tuple(xlist) )
|
||||
return CellStructure( genotypes )
|
||||
return config2structure
|
||||
def config2structure(config):
|
||||
genotypes = []
|
||||
for i in range(1, max_nodes):
|
||||
xlist = []
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
op_name = config[node_str]
|
||||
xlist.append((op_name, j))
|
||||
genotypes.append(tuple(xlist))
|
||||
return CellStructure(genotypes)
|
||||
|
||||
return config2structure
|
||||
|
||||
|
||||
class MyWorker(Worker):
|
||||
def __init__(self, *args, convert_func=None, dataname=None, nas_bench=None, time_budget=None, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.convert_func = convert_func
|
||||
self._dataname = dataname
|
||||
self._nas_bench = nas_bench
|
||||
self.time_budget = time_budget
|
||||
self.seen_archs = []
|
||||
self.sim_cost_time = 0
|
||||
self.real_cost_time = 0
|
||||
self.is_end = False
|
||||
|
||||
def __init__(self, *args, convert_func=None, dataname=None, nas_bench=None, time_budget=None, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.convert_func = convert_func
|
||||
self._dataname = dataname
|
||||
self._nas_bench = nas_bench
|
||||
self.time_budget = time_budget
|
||||
self.seen_archs = []
|
||||
self.sim_cost_time = 0
|
||||
self.real_cost_time = 0
|
||||
self.is_end = False
|
||||
def get_the_best(self):
|
||||
assert len(self.seen_archs) > 0
|
||||
best_index, best_acc = -1, None
|
||||
for arch_index in self.seen_archs:
|
||||
info = self._nas_bench.get_more_info(arch_index, self._dataname, None, hp="200", is_random=True)
|
||||
vacc = info["valid-accuracy"]
|
||||
if best_acc is None or best_acc < vacc:
|
||||
best_acc = vacc
|
||||
best_index = arch_index
|
||||
assert best_index != -1
|
||||
return best_index
|
||||
|
||||
def get_the_best(self):
|
||||
assert len(self.seen_archs) > 0
|
||||
best_index, best_acc = -1, None
|
||||
for arch_index in self.seen_archs:
|
||||
info = self._nas_bench.get_more_info(arch_index, self._dataname, None, hp='200', is_random=True)
|
||||
vacc = info['valid-accuracy']
|
||||
if best_acc is None or best_acc < vacc:
|
||||
best_acc = vacc
|
||||
best_index = arch_index
|
||||
assert best_index != -1
|
||||
return best_index
|
||||
|
||||
def compute(self, config, budget, **kwargs):
|
||||
start_time = time.time()
|
||||
structure = self.convert_func( config )
|
||||
arch_index = self._nas_bench.query_index_by_arch( structure )
|
||||
info = self._nas_bench.get_more_info(arch_index, self._dataname, None, hp='200', is_random=True)
|
||||
cur_time = info['train-all-time'] + info['valid-per-time']
|
||||
cur_vacc = info['valid-accuracy']
|
||||
self.real_cost_time += (time.time() - start_time)
|
||||
if self.sim_cost_time + cur_time <= self.time_budget and not self.is_end:
|
||||
self.sim_cost_time += cur_time
|
||||
self.seen_archs.append( arch_index )
|
||||
return ({'loss': 100 - float(cur_vacc),
|
||||
'info': {'seen-arch' : len(self.seen_archs),
|
||||
'sim-test-time' : self.sim_cost_time,
|
||||
'current-arch' : arch_index}
|
||||
})
|
||||
else:
|
||||
self.is_end = True
|
||||
return ({'loss': 100,
|
||||
'info': {'seen-arch' : len(self.seen_archs),
|
||||
'sim-test-time' : self.sim_cost_time,
|
||||
'current-arch' : None}
|
||||
})
|
||||
def compute(self, config, budget, **kwargs):
|
||||
start_time = time.time()
|
||||
structure = self.convert_func(config)
|
||||
arch_index = self._nas_bench.query_index_by_arch(structure)
|
||||
info = self._nas_bench.get_more_info(arch_index, self._dataname, None, hp="200", is_random=True)
|
||||
cur_time = info["train-all-time"] + info["valid-per-time"]
|
||||
cur_vacc = info["valid-accuracy"]
|
||||
self.real_cost_time += time.time() - start_time
|
||||
if self.sim_cost_time + cur_time <= self.time_budget and not self.is_end:
|
||||
self.sim_cost_time += cur_time
|
||||
self.seen_archs.append(arch_index)
|
||||
return {
|
||||
"loss": 100 - float(cur_vacc),
|
||||
"info": {
|
||||
"seen-arch": len(self.seen_archs),
|
||||
"sim-test-time": self.sim_cost_time,
|
||||
"current-arch": arch_index,
|
||||
},
|
||||
}
|
||||
else:
|
||||
self.is_end = True
|
||||
return {
|
||||
"loss": 100,
|
||||
"info": {"seen-arch": len(self.seen_archs), "sim-test-time": self.sim_cost_time, "current-arch": None},
|
||||
}
|
||||
|
||||
|
||||
def main(xargs, nas_bench):
|
||||
assert torch.cuda.is_available(), 'CUDA is not available.'
|
||||
torch.backends.cudnn.enabled = True
|
||||
torch.backends.cudnn.benchmark = False
|
||||
torch.backends.cudnn.deterministic = True
|
||||
torch.set_num_threads( xargs.workers )
|
||||
prepare_seed(xargs.rand_seed)
|
||||
logger = prepare_logger(args)
|
||||
assert torch.cuda.is_available(), "CUDA is not available."
|
||||
torch.backends.cudnn.enabled = True
|
||||
torch.backends.cudnn.benchmark = False
|
||||
torch.backends.cudnn.deterministic = True
|
||||
torch.set_num_threads(xargs.workers)
|
||||
prepare_seed(xargs.rand_seed)
|
||||
logger = prepare_logger(args)
|
||||
|
||||
if xargs.dataset == 'cifar10':
|
||||
dataname = 'cifar10-valid'
|
||||
else:
|
||||
dataname = xargs.dataset
|
||||
if xargs.data_path is not None:
|
||||
train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
|
||||
split_Fpath = 'configs/nas-benchmark/cifar-split.txt'
|
||||
cifar_split = load_config(split_Fpath, None, None)
|
||||
train_split, valid_split = cifar_split.train, cifar_split.valid
|
||||
logger.log('Load split file from {:}'.format(split_Fpath))
|
||||
config_path = 'configs/nas-benchmark/algos/R-EA.config'
|
||||
config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger)
|
||||
# To split data
|
||||
train_data_v2 = deepcopy(train_data)
|
||||
train_data_v2.transform = valid_data.transform
|
||||
valid_data = train_data_v2
|
||||
search_data = SearchDataset(xargs.dataset, train_data, train_split, valid_split)
|
||||
# data loader
|
||||
train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split) , num_workers=xargs.workers, pin_memory=True)
|
||||
valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True)
|
||||
logger.log('||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size))
|
||||
logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
|
||||
extra_info = {'config': config, 'train_loader': train_loader, 'valid_loader': valid_loader}
|
||||
else:
|
||||
config_path = 'configs/nas-benchmark/algos/R-EA.config'
|
||||
config = load_config(config_path, None, logger)
|
||||
logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
|
||||
extra_info = {'config': config, 'train_loader': None, 'valid_loader': None}
|
||||
if xargs.dataset == "cifar10":
|
||||
dataname = "cifar10-valid"
|
||||
else:
|
||||
dataname = xargs.dataset
|
||||
if xargs.data_path is not None:
|
||||
train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
|
||||
split_Fpath = "configs/nas-benchmark/cifar-split.txt"
|
||||
cifar_split = load_config(split_Fpath, None, None)
|
||||
train_split, valid_split = cifar_split.train, cifar_split.valid
|
||||
logger.log("Load split file from {:}".format(split_Fpath))
|
||||
config_path = "configs/nas-benchmark/algos/R-EA.config"
|
||||
config = load_config(config_path, {"class_num": class_num, "xshape": xshape}, logger)
|
||||
# To split data
|
||||
train_data_v2 = deepcopy(train_data)
|
||||
train_data_v2.transform = valid_data.transform
|
||||
valid_data = train_data_v2
|
||||
search_data = SearchDataset(xargs.dataset, train_data, train_split, valid_split)
|
||||
# data loader
|
||||
train_loader = torch.utils.data.DataLoader(
|
||||
train_data,
|
||||
batch_size=config.batch_size,
|
||||
sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split),
|
||||
num_workers=xargs.workers,
|
||||
pin_memory=True,
|
||||
)
|
||||
valid_loader = torch.utils.data.DataLoader(
|
||||
valid_data,
|
||||
batch_size=config.batch_size,
|
||||
sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split),
|
||||
num_workers=xargs.workers,
|
||||
pin_memory=True,
|
||||
)
|
||||
logger.log(
|
||||
"||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}".format(
|
||||
xargs.dataset, len(train_loader), len(valid_loader), config.batch_size
|
||||
)
|
||||
)
|
||||
logger.log("||||||| {:10s} ||||||| Config={:}".format(xargs.dataset, config))
|
||||
extra_info = {"config": config, "train_loader": train_loader, "valid_loader": valid_loader}
|
||||
else:
|
||||
config_path = "configs/nas-benchmark/algos/R-EA.config"
|
||||
config = load_config(config_path, None, logger)
|
||||
logger.log("||||||| {:10s} ||||||| Config={:}".format(xargs.dataset, config))
|
||||
extra_info = {"config": config, "train_loader": None, "valid_loader": None}
|
||||
|
||||
# nas dataset load
|
||||
assert xargs.arch_nas_dataset is not None and os.path.isfile(xargs.arch_nas_dataset)
|
||||
search_space = get_search_spaces('cell', xargs.search_space_name)
|
||||
cs = get_configuration_space(xargs.max_nodes, search_space)
|
||||
# nas dataset load
|
||||
assert xargs.arch_nas_dataset is not None and os.path.isfile(xargs.arch_nas_dataset)
|
||||
search_space = get_search_spaces("cell", xargs.search_space_name)
|
||||
cs = get_configuration_space(xargs.max_nodes, search_space)
|
||||
|
||||
config2structure = config2structure_func(xargs.max_nodes)
|
||||
hb_run_id = '0'
|
||||
config2structure = config2structure_func(xargs.max_nodes)
|
||||
hb_run_id = "0"
|
||||
|
||||
NS = hpns.NameServer(run_id=hb_run_id, host='localhost', port=0)
|
||||
ns_host, ns_port = NS.start()
|
||||
num_workers = 1
|
||||
NS = hpns.NameServer(run_id=hb_run_id, host="localhost", port=0)
|
||||
ns_host, ns_port = NS.start()
|
||||
num_workers = 1
|
||||
|
||||
#nas_bench = AANASBenchAPI(xargs.arch_nas_dataset)
|
||||
#logger.log('{:} Create NAS-BENCH-API DONE'.format(time_string()))
|
||||
workers = []
|
||||
for i in range(num_workers):
|
||||
w = MyWorker(nameserver=ns_host, nameserver_port=ns_port, convert_func=config2structure, dataname=dataname, nas_bench=nas_bench, time_budget=xargs.time_budget, run_id=hb_run_id, id=i)
|
||||
w.run(background=True)
|
||||
workers.append(w)
|
||||
|
||||
start_time = time.time()
|
||||
bohb = BOHB(configspace=cs,
|
||||
run_id=hb_run_id,
|
||||
eta=3, min_budget=12, max_budget=200,
|
||||
# nas_bench = AANASBenchAPI(xargs.arch_nas_dataset)
|
||||
# logger.log('{:} Create NAS-BENCH-API DONE'.format(time_string()))
|
||||
workers = []
|
||||
for i in range(num_workers):
|
||||
w = MyWorker(
|
||||
nameserver=ns_host,
|
||||
nameserver_port=ns_port,
|
||||
num_samples=xargs.num_samples,
|
||||
random_fraction=xargs.random_fraction, bandwidth_factor=xargs.bandwidth_factor,
|
||||
ping_interval=10, min_bandwidth=xargs.min_bandwidth)
|
||||
|
||||
results = bohb.run(xargs.n_iters, min_n_workers=num_workers)
|
||||
convert_func=config2structure,
|
||||
dataname=dataname,
|
||||
nas_bench=nas_bench,
|
||||
time_budget=xargs.time_budget,
|
||||
run_id=hb_run_id,
|
||||
id=i,
|
||||
)
|
||||
w.run(background=True)
|
||||
workers.append(w)
|
||||
|
||||
bohb.shutdown(shutdown_workers=True)
|
||||
NS.shutdown()
|
||||
start_time = time.time()
|
||||
bohb = BOHB(
|
||||
configspace=cs,
|
||||
run_id=hb_run_id,
|
||||
eta=3,
|
||||
min_budget=12,
|
||||
max_budget=200,
|
||||
nameserver=ns_host,
|
||||
nameserver_port=ns_port,
|
||||
num_samples=xargs.num_samples,
|
||||
random_fraction=xargs.random_fraction,
|
||||
bandwidth_factor=xargs.bandwidth_factor,
|
||||
ping_interval=10,
|
||||
min_bandwidth=xargs.min_bandwidth,
|
||||
)
|
||||
|
||||
real_cost_time = time.time() - start_time
|
||||
results = bohb.run(xargs.n_iters, min_n_workers=num_workers)
|
||||
|
||||
id2config = results.get_id2config_mapping()
|
||||
incumbent = results.get_incumbent_id()
|
||||
logger.log('Best found configuration: {:} within {:.3f} s'.format(id2config[incumbent]['config'], real_cost_time))
|
||||
best_arch = config2structure( id2config[incumbent]['config'] )
|
||||
bohb.shutdown(shutdown_workers=True)
|
||||
NS.shutdown()
|
||||
|
||||
info = nas_bench.query_by_arch(best_arch, '200')
|
||||
if info is None: logger.log('Did not find this architecture : {:}.'.format(best_arch))
|
||||
else : logger.log('{:}'.format(info))
|
||||
logger.log('-'*100)
|
||||
real_cost_time = time.time() - start_time
|
||||
|
||||
logger.log('workers : {:.1f}s with {:} archs'.format(workers[0].time_budget, len(workers[0].seen_archs)))
|
||||
logger.close()
|
||||
return logger.log_dir, nas_bench.query_index_by_arch( best_arch ), real_cost_time
|
||||
|
||||
id2config = results.get_id2config_mapping()
|
||||
incumbent = results.get_incumbent_id()
|
||||
logger.log("Best found configuration: {:} within {:.3f} s".format(id2config[incumbent]["config"], real_cost_time))
|
||||
best_arch = config2structure(id2config[incumbent]["config"])
|
||||
|
||||
info = nas_bench.query_by_arch(best_arch, "200")
|
||||
if info is None:
|
||||
logger.log("Did not find this architecture : {:}.".format(best_arch))
|
||||
else:
|
||||
logger.log("{:}".format(info))
|
||||
logger.log("-" * 100)
|
||||
|
||||
logger.log("workers : {:.1f}s with {:} archs".format(workers[0].time_budget, len(workers[0].seen_archs)))
|
||||
logger.close()
|
||||
return logger.log_dir, nas_bench.query_index_by_arch(best_arch), real_cost_time
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser("BOHB: Robust and Efficient Hyperparameter Optimization at Scale")
|
||||
parser.add_argument('--data_path', type=str, help='Path to dataset')
|
||||
parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
|
||||
# channels and number-of-cells
|
||||
parser.add_argument('--search_space_name', type=str, help='The search space name.')
|
||||
parser.add_argument('--max_nodes', type=int, help='The maximum number of nodes.')
|
||||
parser.add_argument('--channel', type=int, help='The number of channels.')
|
||||
parser.add_argument('--num_cells', type=int, help='The number of cells in one stage.')
|
||||
parser.add_argument('--time_budget', type=int, help='The total time cost budge for searching (in seconds).')
|
||||
# BOHB
|
||||
parser.add_argument('--strategy', default="sampling", type=str, nargs='?', help='optimization strategy for the acquisition function')
|
||||
parser.add_argument('--min_bandwidth', default=.3, type=float, nargs='?', help='minimum bandwidth for KDE')
|
||||
parser.add_argument('--num_samples', default=64, type=int, nargs='?', help='number of samples for the acquisition function')
|
||||
parser.add_argument('--random_fraction', default=.33, type=float, nargs='?', help='fraction of random configurations')
|
||||
parser.add_argument('--bandwidth_factor', default=3, type=int, nargs='?', help='factor multiplied to the bandwidth')
|
||||
parser.add_argument('--n_iters', default=100, type=int, nargs='?', help='number of iterations for optimization method')
|
||||
# log
|
||||
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
|
||||
parser.add_argument('--save_dir', type=str, help='Folder to save checkpoints and log.')
|
||||
parser.add_argument('--arch_nas_dataset', type=str, help='The path to load the architecture dataset (tiny-nas-benchmark).')
|
||||
parser.add_argument('--print_freq', type=int, help='print frequency (default: 200)')
|
||||
parser.add_argument('--rand_seed', type=int, help='manual seed')
|
||||
args = parser.parse_args()
|
||||
#if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000)
|
||||
if args.arch_nas_dataset is None or not os.path.isfile(args.arch_nas_dataset):
|
||||
nas_bench = None
|
||||
else:
|
||||
print ('{:} build NAS-Benchmark-API from {:}'.format(time_string(), args.arch_nas_dataset))
|
||||
nas_bench = API(args.arch_nas_dataset)
|
||||
if args.rand_seed < 0:
|
||||
save_dir, all_indexes, num, all_times = None, [], 500, []
|
||||
for i in range(num):
|
||||
print ('{:} : {:03d}/{:03d}'.format(time_string(), i, num))
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
save_dir, index, ctime = main(args, nas_bench)
|
||||
all_indexes.append( index )
|
||||
all_times.append( ctime )
|
||||
print ('\n average time : {:.3f} s'.format(sum(all_times)/len(all_times)))
|
||||
torch.save(all_indexes, save_dir / 'results.pth')
|
||||
else:
|
||||
main(args, nas_bench)
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser("BOHB: Robust and Efficient Hyperparameter Optimization at Scale")
|
||||
parser.add_argument("--data_path", type=str, help="Path to dataset")
|
||||
parser.add_argument(
|
||||
"--dataset",
|
||||
type=str,
|
||||
choices=["cifar10", "cifar100", "ImageNet16-120"],
|
||||
help="Choose between Cifar10/100 and ImageNet-16.",
|
||||
)
|
||||
# channels and number-of-cells
|
||||
parser.add_argument("--search_space_name", type=str, help="The search space name.")
|
||||
parser.add_argument("--max_nodes", type=int, help="The maximum number of nodes.")
|
||||
parser.add_argument("--channel", type=int, help="The number of channels.")
|
||||
parser.add_argument("--num_cells", type=int, help="The number of cells in one stage.")
|
||||
parser.add_argument("--time_budget", type=int, help="The total time cost budge for searching (in seconds).")
|
||||
# BOHB
|
||||
parser.add_argument(
|
||||
"--strategy", default="sampling", type=str, nargs="?", help="optimization strategy for the acquisition function"
|
||||
)
|
||||
parser.add_argument("--min_bandwidth", default=0.3, type=float, nargs="?", help="minimum bandwidth for KDE")
|
||||
parser.add_argument(
|
||||
"--num_samples", default=64, type=int, nargs="?", help="number of samples for the acquisition function"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--random_fraction", default=0.33, type=float, nargs="?", help="fraction of random configurations"
|
||||
)
|
||||
parser.add_argument("--bandwidth_factor", default=3, type=int, nargs="?", help="factor multiplied to the bandwidth")
|
||||
parser.add_argument(
|
||||
"--n_iters", default=100, type=int, nargs="?", help="number of iterations for optimization method"
|
||||
)
|
||||
# log
|
||||
parser.add_argument("--workers", type=int, default=2, help="number of data loading workers (default: 2)")
|
||||
parser.add_argument("--save_dir", type=str, help="Folder to save checkpoints and log.")
|
||||
parser.add_argument(
|
||||
"--arch_nas_dataset", type=str, help="The path to load the architecture dataset (tiny-nas-benchmark)."
|
||||
)
|
||||
parser.add_argument("--print_freq", type=int, help="print frequency (default: 200)")
|
||||
parser.add_argument("--rand_seed", type=int, help="manual seed")
|
||||
args = parser.parse_args()
|
||||
# if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000)
|
||||
if args.arch_nas_dataset is None or not os.path.isfile(args.arch_nas_dataset):
|
||||
nas_bench = None
|
||||
else:
|
||||
print("{:} build NAS-Benchmark-API from {:}".format(time_string(), args.arch_nas_dataset))
|
||||
nas_bench = API(args.arch_nas_dataset)
|
||||
if args.rand_seed < 0:
|
||||
save_dir, all_indexes, num, all_times = None, [], 500, []
|
||||
for i in range(num):
|
||||
print("{:} : {:03d}/{:03d}".format(time_string(), i, num))
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
save_dir, index, ctime = main(args, nas_bench)
|
||||
all_indexes.append(index)
|
||||
all_times.append(ctime)
|
||||
print("\n average time : {:.3f} s".format(sum(all_times) / len(all_times)))
|
||||
torch.save(all_indexes, save_dir / "results.pth")
|
||||
else:
|
||||
main(args, nas_bench)
|
||||
|
Reference in New Issue
Block a user