Reformulate via black
This commit is contained in:
@@ -12,158 +12,174 @@ import numpy as np
|
||||
from typing import List, Text, Dict, Any
|
||||
from shutil import copyfile
|
||||
from collections import defaultdict, OrderedDict
|
||||
from copy import deepcopy
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
import matplotlib
|
||||
import seaborn as sns
|
||||
matplotlib.use('agg')
|
||||
|
||||
matplotlib.use("agg")
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.ticker as ticker
|
||||
|
||||
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
||||
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
||||
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
from config_utils import dict2config, load_config
|
||||
from nats_bench import create
|
||||
from log_utils import time_string
|
||||
|
||||
|
||||
def fetch_data(root_dir='./output/search', search_space='tss', dataset=None):
|
||||
ss_dir = '{:}-{:}'.format(root_dir, search_space)
|
||||
alg2name, alg2path = OrderedDict(), OrderedDict()
|
||||
alg2name['REA'] = 'R-EA-SS3'
|
||||
alg2name['REINFORCE'] = 'REINFORCE-0.01'
|
||||
alg2name['RANDOM'] = 'RANDOM'
|
||||
alg2name['BOHB'] = 'BOHB'
|
||||
for alg, name in alg2name.items():
|
||||
alg2path[alg] = os.path.join(ss_dir, dataset, name, 'results.pth')
|
||||
assert os.path.isfile(alg2path[alg]), 'invalid path : {:}'.format(alg2path[alg])
|
||||
alg2data = OrderedDict()
|
||||
for alg, path in alg2path.items():
|
||||
data = torch.load(path)
|
||||
for index, info in data.items():
|
||||
info['time_w_arch'] = [(x, y) for x, y in zip(info['all_total_times'], info['all_archs'])]
|
||||
for j, arch in enumerate(info['all_archs']):
|
||||
assert arch != -1, 'invalid arch from {:} {:} {:} ({:}, {:})'.format(alg, search_space, dataset, index, j)
|
||||
alg2data[alg] = data
|
||||
return alg2data
|
||||
def fetch_data(root_dir="./output/search", search_space="tss", dataset=None):
|
||||
ss_dir = "{:}-{:}".format(root_dir, search_space)
|
||||
alg2name, alg2path = OrderedDict(), OrderedDict()
|
||||
alg2name["REA"] = "R-EA-SS3"
|
||||
alg2name["REINFORCE"] = "REINFORCE-0.01"
|
||||
alg2name["RANDOM"] = "RANDOM"
|
||||
alg2name["BOHB"] = "BOHB"
|
||||
for alg, name in alg2name.items():
|
||||
alg2path[alg] = os.path.join(ss_dir, dataset, name, "results.pth")
|
||||
assert os.path.isfile(alg2path[alg]), "invalid path : {:}".format(alg2path[alg])
|
||||
alg2data = OrderedDict()
|
||||
for alg, path in alg2path.items():
|
||||
data = torch.load(path)
|
||||
for index, info in data.items():
|
||||
info["time_w_arch"] = [(x, y) for x, y in zip(info["all_total_times"], info["all_archs"])]
|
||||
for j, arch in enumerate(info["all_archs"]):
|
||||
assert arch != -1, "invalid arch from {:} {:} {:} ({:}, {:})".format(
|
||||
alg, search_space, dataset, index, j
|
||||
)
|
||||
alg2data[alg] = data
|
||||
return alg2data
|
||||
|
||||
|
||||
def query_performance(api, data, dataset, ticket):
|
||||
results, is_size_space = [], api.search_space_name == 'size'
|
||||
for i, info in data.items():
|
||||
time_w_arch = sorted(info['time_w_arch'], key=lambda x: abs(x[0]-ticket))
|
||||
time_a, arch_a = time_w_arch[0]
|
||||
time_b, arch_b = time_w_arch[1]
|
||||
info_a = api.get_more_info(arch_a, dataset=dataset, hp=90 if is_size_space else 200, is_random=False)
|
||||
info_b = api.get_more_info(arch_b, dataset=dataset, hp=90 if is_size_space else 200, is_random=False)
|
||||
accuracy_a, accuracy_b = info_a['test-accuracy'], info_b['test-accuracy']
|
||||
interplate = (time_b-ticket) / (time_b-time_a) * accuracy_a + (ticket-time_a) / (time_b-time_a) * accuracy_b
|
||||
results.append(interplate)
|
||||
# return sum(results) / len(results)
|
||||
return np.mean(results), np.std(results)
|
||||
results, is_size_space = [], api.search_space_name == "size"
|
||||
for i, info in data.items():
|
||||
time_w_arch = sorted(info["time_w_arch"], key=lambda x: abs(x[0] - ticket))
|
||||
time_a, arch_a = time_w_arch[0]
|
||||
time_b, arch_b = time_w_arch[1]
|
||||
info_a = api.get_more_info(arch_a, dataset=dataset, hp=90 if is_size_space else 200, is_random=False)
|
||||
info_b = api.get_more_info(arch_b, dataset=dataset, hp=90 if is_size_space else 200, is_random=False)
|
||||
accuracy_a, accuracy_b = info_a["test-accuracy"], info_b["test-accuracy"]
|
||||
interplate = (time_b - ticket) / (time_b - time_a) * accuracy_a + (ticket - time_a) / (
|
||||
time_b - time_a
|
||||
) * accuracy_b
|
||||
results.append(interplate)
|
||||
# return sum(results) / len(results)
|
||||
return np.mean(results), np.std(results)
|
||||
|
||||
|
||||
def show_valid_test(api, data, dataset):
|
||||
valid_accs, test_accs, is_size_space = [], [], api.search_space_name == 'size'
|
||||
for i, info in data.items():
|
||||
time, arch = info['time_w_arch'][-1]
|
||||
if dataset == 'cifar10':
|
||||
xinfo = api.get_more_info(arch, dataset=dataset, hp=90 if is_size_space else 200, is_random=False)
|
||||
test_accs.append(xinfo['test-accuracy'])
|
||||
xinfo = api.get_more_info(arch, dataset='cifar10-valid', hp=90 if is_size_space else 200, is_random=False)
|
||||
valid_accs.append(xinfo['valid-accuracy'])
|
||||
else:
|
||||
xinfo = api.get_more_info(arch, dataset=dataset, hp=90 if is_size_space else 200, is_random=False)
|
||||
valid_accs.append(xinfo['valid-accuracy'])
|
||||
test_accs.append(xinfo['test-accuracy'])
|
||||
valid_str = '{:.2f}$\pm${:.2f}'.format(np.mean(valid_accs), np.std(valid_accs))
|
||||
test_str = '{:.2f}$\pm${:.2f}'.format(np.mean(test_accs), np.std(test_accs))
|
||||
return valid_str, test_str
|
||||
valid_accs, test_accs, is_size_space = [], [], api.search_space_name == "size"
|
||||
for i, info in data.items():
|
||||
time, arch = info["time_w_arch"][-1]
|
||||
if dataset == "cifar10":
|
||||
xinfo = api.get_more_info(arch, dataset=dataset, hp=90 if is_size_space else 200, is_random=False)
|
||||
test_accs.append(xinfo["test-accuracy"])
|
||||
xinfo = api.get_more_info(arch, dataset="cifar10-valid", hp=90 if is_size_space else 200, is_random=False)
|
||||
valid_accs.append(xinfo["valid-accuracy"])
|
||||
else:
|
||||
xinfo = api.get_more_info(arch, dataset=dataset, hp=90 if is_size_space else 200, is_random=False)
|
||||
valid_accs.append(xinfo["valid-accuracy"])
|
||||
test_accs.append(xinfo["test-accuracy"])
|
||||
valid_str = "{:.2f}$\pm${:.2f}".format(np.mean(valid_accs), np.std(valid_accs))
|
||||
test_str = "{:.2f}$\pm${:.2f}".format(np.mean(test_accs), np.std(test_accs))
|
||||
return valid_str, test_str
|
||||
|
||||
|
||||
y_min_s = {('cifar10', 'tss'): 90,
|
||||
('cifar10', 'sss'): 92,
|
||||
('cifar100', 'tss'): 65,
|
||||
('cifar100', 'sss'): 65,
|
||||
('ImageNet16-120', 'tss'): 36,
|
||||
('ImageNet16-120', 'sss'): 40}
|
||||
y_min_s = {
|
||||
("cifar10", "tss"): 90,
|
||||
("cifar10", "sss"): 92,
|
||||
("cifar100", "tss"): 65,
|
||||
("cifar100", "sss"): 65,
|
||||
("ImageNet16-120", "tss"): 36,
|
||||
("ImageNet16-120", "sss"): 40,
|
||||
}
|
||||
|
||||
y_max_s = {('cifar10', 'tss'): 94.3,
|
||||
('cifar10', 'sss'): 93.3,
|
||||
('cifar100', 'tss'): 72.5,
|
||||
('cifar100', 'sss'): 70.5,
|
||||
('ImageNet16-120', 'tss'): 46,
|
||||
('ImageNet16-120', 'sss'): 46}
|
||||
y_max_s = {
|
||||
("cifar10", "tss"): 94.3,
|
||||
("cifar10", "sss"): 93.3,
|
||||
("cifar100", "tss"): 72.5,
|
||||
("cifar100", "sss"): 70.5,
|
||||
("ImageNet16-120", "tss"): 46,
|
||||
("ImageNet16-120", "sss"): 46,
|
||||
}
|
||||
|
||||
x_axis_s = {('cifar10', 'tss'): 200,
|
||||
('cifar10', 'sss'): 200,
|
||||
('cifar100', 'tss'): 400,
|
||||
('cifar100', 'sss'): 400,
|
||||
('ImageNet16-120', 'tss'): 1200,
|
||||
('ImageNet16-120', 'sss'): 600}
|
||||
x_axis_s = {
|
||||
("cifar10", "tss"): 200,
|
||||
("cifar10", "sss"): 200,
|
||||
("cifar100", "tss"): 400,
|
||||
("cifar100", "sss"): 400,
|
||||
("ImageNet16-120", "tss"): 1200,
|
||||
("ImageNet16-120", "sss"): 600,
|
||||
}
|
||||
|
||||
name2label = {'cifar10': 'CIFAR-10',
|
||||
'cifar100': 'CIFAR-100',
|
||||
'ImageNet16-120': 'ImageNet-16-120'}
|
||||
name2label = {"cifar10": "CIFAR-10", "cifar100": "CIFAR-100", "ImageNet16-120": "ImageNet-16-120"}
|
||||
|
||||
|
||||
def visualize_curve(api, vis_save_dir, search_space):
|
||||
vis_save_dir = vis_save_dir.resolve()
|
||||
vis_save_dir.mkdir(parents=True, exist_ok=True)
|
||||
vis_save_dir = vis_save_dir.resolve()
|
||||
vis_save_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
dpi, width, height = 250, 5200, 1400
|
||||
figsize = width / float(dpi), height / float(dpi)
|
||||
LabelSize, LegendFontsize = 16, 16
|
||||
dpi, width, height = 250, 5200, 1400
|
||||
figsize = width / float(dpi), height / float(dpi)
|
||||
LabelSize, LegendFontsize = 16, 16
|
||||
|
||||
def sub_plot_fn(ax, dataset):
|
||||
xdataset, max_time = dataset.split('-T')
|
||||
alg2data = fetch_data(search_space=search_space, dataset=dataset)
|
||||
alg2accuracies = OrderedDict()
|
||||
total_tickets = 150
|
||||
time_tickets = [float(i) / total_tickets * int(max_time) for i in range(total_tickets)]
|
||||
colors = ['b', 'g', 'c', 'm', 'y']
|
||||
ax.set_xlim(0, x_axis_s[(xdataset, search_space)])
|
||||
ax.set_ylim(y_min_s[(xdataset, search_space)],
|
||||
y_max_s[(xdataset, search_space)])
|
||||
for idx, (alg, data) in enumerate(alg2data.items()):
|
||||
accuracies = []
|
||||
for ticket in time_tickets:
|
||||
accuracy, accuracy_std = query_performance(api, data, xdataset, ticket)
|
||||
accuracies.append(accuracy)
|
||||
valid_str, test_str = show_valid_test(api, data, xdataset)
|
||||
# print('{:} plot alg : {:10s}, final accuracy = {:.2f}$\pm${:.2f}'.format(time_string(), alg, accuracy, accuracy_std))
|
||||
print('{:} plot alg : {:10s} | validation = {:} | test = {:}'.format(time_string(), alg, valid_str, test_str))
|
||||
alg2accuracies[alg] = accuracies
|
||||
ax.plot([x/100 for x in time_tickets], accuracies, c=colors[idx], label='{:}'.format(alg))
|
||||
ax.set_xlabel('Estimated wall-clock time (1e2 seconds)', fontsize=LabelSize)
|
||||
ax.set_ylabel('Test accuracy on {:}'.format(name2label[xdataset]), fontsize=LabelSize)
|
||||
ax.set_title('Searching results on {:}'.format(name2label[xdataset]), fontsize=LabelSize+4)
|
||||
ax.legend(loc=4, fontsize=LegendFontsize)
|
||||
def sub_plot_fn(ax, dataset):
|
||||
xdataset, max_time = dataset.split("-T")
|
||||
alg2data = fetch_data(search_space=search_space, dataset=dataset)
|
||||
alg2accuracies = OrderedDict()
|
||||
total_tickets = 150
|
||||
time_tickets = [float(i) / total_tickets * int(max_time) for i in range(total_tickets)]
|
||||
colors = ["b", "g", "c", "m", "y"]
|
||||
ax.set_xlim(0, x_axis_s[(xdataset, search_space)])
|
||||
ax.set_ylim(y_min_s[(xdataset, search_space)], y_max_s[(xdataset, search_space)])
|
||||
for idx, (alg, data) in enumerate(alg2data.items()):
|
||||
accuracies = []
|
||||
for ticket in time_tickets:
|
||||
accuracy, accuracy_std = query_performance(api, data, xdataset, ticket)
|
||||
accuracies.append(accuracy)
|
||||
valid_str, test_str = show_valid_test(api, data, xdataset)
|
||||
# print('{:} plot alg : {:10s}, final accuracy = {:.2f}$\pm${:.2f}'.format(time_string(), alg, accuracy, accuracy_std))
|
||||
print(
|
||||
"{:} plot alg : {:10s} | validation = {:} | test = {:}".format(time_string(), alg, valid_str, test_str)
|
||||
)
|
||||
alg2accuracies[alg] = accuracies
|
||||
ax.plot([x / 100 for x in time_tickets], accuracies, c=colors[idx], label="{:}".format(alg))
|
||||
ax.set_xlabel("Estimated wall-clock time (1e2 seconds)", fontsize=LabelSize)
|
||||
ax.set_ylabel("Test accuracy on {:}".format(name2label[xdataset]), fontsize=LabelSize)
|
||||
ax.set_title("Searching results on {:}".format(name2label[xdataset]), fontsize=LabelSize + 4)
|
||||
ax.legend(loc=4, fontsize=LegendFontsize)
|
||||
|
||||
fig, axs = plt.subplots(1, 3, figsize=figsize)
|
||||
# datasets = ['cifar10', 'cifar100', 'ImageNet16-120']
|
||||
if search_space == 'tss':
|
||||
datasets = ['cifar10-T20000', 'cifar100-T40000', 'ImageNet16-120-T120000']
|
||||
elif search_space == 'sss':
|
||||
datasets = ['cifar10-T20000', 'cifar100-T40000', 'ImageNet16-120-T60000']
|
||||
else:
|
||||
raise ValueError('Unknown search space: {:}'.format(search_space))
|
||||
for dataset, ax in zip(datasets, axs):
|
||||
sub_plot_fn(ax, dataset)
|
||||
print('sub-plot {:} on {:} done.'.format(dataset, search_space))
|
||||
save_path = (vis_save_dir / '{:}-curve.png'.format(search_space)).resolve()
|
||||
fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png')
|
||||
print ('{:} save into {:}'.format(time_string(), save_path))
|
||||
plt.close('all')
|
||||
fig, axs = plt.subplots(1, 3, figsize=figsize)
|
||||
# datasets = ['cifar10', 'cifar100', 'ImageNet16-120']
|
||||
if search_space == "tss":
|
||||
datasets = ["cifar10-T20000", "cifar100-T40000", "ImageNet16-120-T120000"]
|
||||
elif search_space == "sss":
|
||||
datasets = ["cifar10-T20000", "cifar100-T40000", "ImageNet16-120-T60000"]
|
||||
else:
|
||||
raise ValueError("Unknown search space: {:}".format(search_space))
|
||||
for dataset, ax in zip(datasets, axs):
|
||||
sub_plot_fn(ax, dataset)
|
||||
print("sub-plot {:} on {:} done.".format(dataset, search_space))
|
||||
save_path = (vis_save_dir / "{:}-curve.png".format(search_space)).resolve()
|
||||
fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png")
|
||||
print("{:} save into {:}".format(time_string(), save_path))
|
||||
plt.close("all")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument('--save_dir', type=str, default='output/vis-nas-bench/nas-algos', help='Folder to save checkpoints and log.')
|
||||
parser.add_argument('--search_space', type=str, choices=['tss', 'sss'], help='Choose the search space.')
|
||||
args = parser.parse_args()
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size",
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--save_dir", type=str, default="output/vis-nas-bench/nas-algos", help="Folder to save checkpoints and log."
|
||||
)
|
||||
parser.add_argument("--search_space", type=str, choices=["tss", "sss"], help="Choose the search space.")
|
||||
args = parser.parse_args()
|
||||
|
||||
save_dir = Path(args.save_dir)
|
||||
save_dir = Path(args.save_dir)
|
||||
|
||||
api = create(None, args.search_space, fast_mode=True, verbose=False)
|
||||
visualize_curve(api, save_dir, args.search_space)
|
||||
api = create(None, args.search_space, fast_mode=True, verbose=False)
|
||||
visualize_curve(api, save_dir, args.search_space)
|
||||
|
Reference in New Issue
Block a user