Use black for lib/models

This commit is contained in:
D-X-Y
2021-05-12 16:28:05 +08:00
parent d51e5fdc7f
commit f1c47af5fa
42 changed files with 7552 additions and 4688 deletions

View File

@@ -0,0 +1,179 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
#####################################################
# python exps/LFNA/lfna-tall-hpnet.py --env_version v1 --hidden_dim 16
#####################################################
import sys, time, copy, torch, random, argparse
from tqdm import tqdm
from copy import deepcopy
from pathlib import Path
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint
from log_utils import time_string
from log_utils import AverageMeter, convert_secs2time
from utils import split_str2indexes
from procedures.advanced_main import basic_train_fn, basic_eval_fn
from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
from datasets.synthetic_core import get_synthetic_env
from models.xcore import get_model
from xlayers import super_core, trunc_normal_
from lfna_utils import lfna_setup, train_model, TimeData
# from lfna_models import HyperNet_VX as HyperNet
from lfna_models import HyperNet
def main(args):
logger, env_info, model_kwargs = lfna_setup(args)
dynamic_env = env_info["dynamic_env"]
model = get_model(dict(model_type="simple_mlp"), **model_kwargs)
criterion = torch.nn.MSELoss()
logger.log("There are {:} weights.".format(model.get_w_container().numel()))
shape_container = model.get_w_container().to_shape_container()
hypernet = HyperNet(shape_container, args.hidden_dim, args.task_dim)
total_bar = env_info["total"] - 1
task_embeds = []
for i in range(total_bar):
task_embeds.append(torch.nn.Parameter(torch.Tensor(1, args.task_dim)))
for task_embed in task_embeds:
trunc_normal_(task_embed, std=0.02)
parameters = list(hypernet.parameters()) + task_embeds
optimizer = torch.optim.Adam(parameters, lr=args.init_lr, amsgrad=True)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
milestones=[
int(args.epochs * 0.8),
int(args.epochs * 0.9),
],
gamma=0.1,
)
# LFNA meta-training
loss_meter = AverageMeter()
per_epoch_time, start_time = AverageMeter(), time.time()
for iepoch in range(args.epochs):
need_time = "Time Left: {:}".format(
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
)
head_str = (
"[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs)
+ need_time
)
limit_bar = float(iepoch + 1) / args.epochs * total_bar
limit_bar = min(max(0, int(limit_bar)), total_bar)
losses = []
for ibatch in range(args.meta_batch):
cur_time = random.randint(0, limit_bar)
cur_task_embed = task_embeds[cur_time]
cur_container = hypernet(cur_task_embed)
cur_x = env_info["{:}-x".format(cur_time)]
cur_y = env_info["{:}-y".format(cur_time)]
cur_dataset = TimeData(cur_time, cur_x, cur_y)
preds = model.forward_with_container(cur_dataset.x, cur_container)
optimizer.zero_grad()
loss = criterion(preds, cur_dataset.y)
losses.append(loss)
final_loss = torch.stack(losses).mean()
final_loss.backward()
optimizer.step()
lr_scheduler.step()
loss_meter.update(final_loss.item())
if iepoch % 200 == 0:
logger.log(
head_str
+ "meta-loss: {:.4f} ({:.4f}) :: lr={:.5f}, batch={:}, limit={:}".format(
loss_meter.avg,
loss_meter.val,
min(lr_scheduler.get_last_lr()),
len(losses),
limit_bar,
)
)
save_checkpoint(
{
"hypernet": hypernet.state_dict(),
"task_embed": task_embed,
"lr_scheduler": lr_scheduler.state_dict(),
"iepoch": iepoch,
},
logger.path("model"),
logger,
)
loss_meter.reset()
per_epoch_time.update(time.time() - start_time)
start_time = time.time()
print(model)
print(hypernet)
logger.log("-" * 200 + "\n")
logger.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser("Use the data in the past.")
parser.add_argument(
"--save_dir",
type=str,
default="./outputs/lfna-synthetic/lfna-tall-hpnet",
help="The checkpoint directory.",
)
parser.add_argument(
"--env_version",
type=str,
required=True,
help="The synthetic enviornment version.",
)
parser.add_argument(
"--hidden_dim",
type=int,
required=True,
help="The hidden dimension.",
)
#####
parser.add_argument(
"--init_lr",
type=float,
default=0.1,
help="The initial learning rate for the optimizer (default is Adam)",
)
parser.add_argument(
"--meta_batch",
type=int,
default=64,
help="The batch size for the meta-model",
)
parser.add_argument(
"--epochs",
type=int,
default=2000,
help="The total number of epochs.",
)
# Random Seed
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
args = parser.parse_args()
if args.rand_seed is None or args.rand_seed < 0:
args.rand_seed = random.randint(1, 100000)
assert args.save_dir is not None, "The save dir argument can not be None"
args.task_dim = args.hidden_dim
args.save_dir = "{:}-{:}-d{:}".format(
args.save_dir, args.env_version, args.hidden_dim
)
main(args)

View File

@@ -41,10 +41,14 @@ def main(args):
shape_container = model.get_w_container().to_shape_container()
hypernet = HyperNet(shape_container, args.hidden_dim, args.task_dim)
# task_embed = torch.nn.Parameter(torch.Tensor(env_info["total"], args.task_dim))
task_embed = torch.nn.Parameter(torch.Tensor(1, args.task_dim))
trunc_normal_(task_embed, std=0.02)
total_bar = 10
task_embeds = []
for i in range(total_bar):
task_embeds.append(torch.nn.Parameter(torch.Tensor(1, args.task_dim)))
for task_embed in task_embeds:
trunc_normal_(task_embed, std=0.02)
parameters = list(hypernet.parameters()) + [task_embed]
parameters = list(hypernet.parameters()) + task_embeds
optimizer = torch.optim.Adam(parameters, lr=args.init_lr, amsgrad=True)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
@@ -56,7 +60,6 @@ def main(args):
)
# total_bar = env_info["total"] - 1
total_bar = 1
# LFNA meta-training
loss_meter = AverageMeter()
per_epoch_time, start_time = AverageMeter(), time.time()
@@ -74,7 +77,7 @@ def main(args):
# for ibatch in range(args.meta_batch):
for cur_time in range(total_bar):
# cur_time = random.randint(0, total_bar)
cur_task_embed = task_embed
cur_task_embed = task_embeds[cur_time]
cur_container = hypernet(cur_task_embed)
cur_x = env_info["{:}-x".format(cur_time)]
cur_y = env_info["{:}-y".format(cur_time)]
@@ -98,7 +101,7 @@ def main(args):
+ "meta-loss: {:.4f} ({:.4f}) :: lr={:.5f}, batch={:}".format(
loss_meter.avg,
loss_meter.val,
min(lr_scheduler.get_lr()),
min(lr_scheduler.get_last_lr()),
len(losses),
)
)

View File

@@ -28,6 +28,15 @@ class HyperNet(super_core.SuperModule):
)
trunc_normal_(self._super_layer_embed, std=0.02)
model_kwargs = dict(
input_dim=layer_embeding + task_embedding,
output_dim=max(self._numel_per_layer),
hidden_dims=[layer_embeding * 4] * 4,
act_cls="gelu",
norm_cls="layer_norm_1d",
)
self._generator = get_model(dict(model_type="norm_mlp"), **model_kwargs)
"""
model_kwargs = dict(
input_dim=layer_embeding + task_embedding,
output_dim=max(self._numel_per_layer),
@@ -36,6 +45,7 @@ class HyperNet(super_core.SuperModule):
norm_cls="identity",
)
self._generator = get_model(dict(model_type="simple_mlp"), **model_kwargs)
"""
self._return_container = return_container
print("generator: {:}".format(self._generator))

View File

@@ -11,111 +11,145 @@ from models.cell_operations import OPS
# Cell for NAS-Bench-201
class InferCell(nn.Module):
def __init__(
self, genotype, C_in, C_out, stride, affine=True, track_running_stats=True
):
super(InferCell, self).__init__()
def __init__(self, genotype, C_in, C_out, stride, affine=True, track_running_stats=True):
super(InferCell, self).__init__()
self.layers = nn.ModuleList()
self.node_IN = []
self.node_IX = []
self.genotype = deepcopy(genotype)
for i in range(1, len(genotype)):
node_info = genotype[i - 1]
cur_index = []
cur_innod = []
for (op_name, op_in) in node_info:
if op_in == 0:
layer = OPS[op_name](
C_in, C_out, stride, affine, track_running_stats
)
else:
layer = OPS[op_name](C_out, C_out, 1, affine, track_running_stats)
cur_index.append(len(self.layers))
cur_innod.append(op_in)
self.layers.append(layer)
self.node_IX.append(cur_index)
self.node_IN.append(cur_innod)
self.nodes = len(genotype)
self.in_dim = C_in
self.out_dim = C_out
self.layers = nn.ModuleList()
self.node_IN = []
self.node_IX = []
self.genotype = deepcopy(genotype)
for i in range(1, len(genotype)):
node_info = genotype[i-1]
cur_index = []
cur_innod = []
for (op_name, op_in) in node_info:
if op_in == 0:
layer = OPS[op_name](C_in , C_out, stride, affine, track_running_stats)
else:
layer = OPS[op_name](C_out, C_out, 1, affine, track_running_stats)
cur_index.append( len(self.layers) )
cur_innod.append( op_in )
self.layers.append( layer )
self.node_IX.append( cur_index )
self.node_IN.append( cur_innod )
self.nodes = len(genotype)
self.in_dim = C_in
self.out_dim = C_out
def extra_repr(self):
string = 'info :: nodes={nodes}, inC={in_dim}, outC={out_dim}'.format(**self.__dict__)
laystr = []
for i, (node_layers, node_innods) in enumerate(zip(self.node_IX,self.node_IN)):
y = ['I{:}-L{:}'.format(_ii, _il) for _il, _ii in zip(node_layers, node_innods)]
x = '{:}<-({:})'.format(i+1, ','.join(y))
laystr.append( x )
return string + ', [{:}]'.format( ' | '.join(laystr) ) + ', {:}'.format(self.genotype.tostr())
def forward(self, inputs):
nodes = [inputs]
for i, (node_layers, node_innods) in enumerate(zip(self.node_IX,self.node_IN)):
node_feature = sum( self.layers[_il](nodes[_ii]) for _il, _ii in zip(node_layers, node_innods) )
nodes.append( node_feature )
return nodes[-1]
def extra_repr(self):
string = "info :: nodes={nodes}, inC={in_dim}, outC={out_dim}".format(
**self.__dict__
)
laystr = []
for i, (node_layers, node_innods) in enumerate(zip(self.node_IX, self.node_IN)):
y = [
"I{:}-L{:}".format(_ii, _il)
for _il, _ii in zip(node_layers, node_innods)
]
x = "{:}<-({:})".format(i + 1, ",".join(y))
laystr.append(x)
return (
string
+ ", [{:}]".format(" | ".join(laystr))
+ ", {:}".format(self.genotype.tostr())
)
def forward(self, inputs):
nodes = [inputs]
for i, (node_layers, node_innods) in enumerate(zip(self.node_IX, self.node_IN)):
node_feature = sum(
self.layers[_il](nodes[_ii])
for _il, _ii in zip(node_layers, node_innods)
)
nodes.append(node_feature)
return nodes[-1]
# Learning Transferable Architectures for Scalable Image Recognition, CVPR 2018
class NASNetInferCell(nn.Module):
def __init__(
self,
genotype,
C_prev_prev,
C_prev,
C,
reduction,
reduction_prev,
affine,
track_running_stats,
):
super(NASNetInferCell, self).__init__()
self.reduction = reduction
if reduction_prev:
self.preprocess0 = OPS["skip_connect"](
C_prev_prev, C, 2, affine, track_running_stats
)
else:
self.preprocess0 = OPS["nor_conv_1x1"](
C_prev_prev, C, 1, affine, track_running_stats
)
self.preprocess1 = OPS["nor_conv_1x1"](
C_prev, C, 1, affine, track_running_stats
)
def __init__(self, genotype, C_prev_prev, C_prev, C, reduction, reduction_prev, affine, track_running_stats):
super(NASNetInferCell, self).__init__()
self.reduction = reduction
if reduction_prev: self.preprocess0 = OPS['skip_connect'](C_prev_prev, C, 2, affine, track_running_stats)
else : self.preprocess0 = OPS['nor_conv_1x1'](C_prev_prev, C, 1, affine, track_running_stats)
self.preprocess1 = OPS['nor_conv_1x1'](C_prev, C, 1, affine, track_running_stats)
if not reduction:
nodes, concats = genotype["normal"], genotype["normal_concat"]
else:
nodes, concats = genotype["reduce"], genotype["reduce_concat"]
self._multiplier = len(concats)
self._concats = concats
self._steps = len(nodes)
self._nodes = nodes
self.edges = nn.ModuleDict()
for i, node in enumerate(nodes):
for in_node in node:
name, j = in_node[0], in_node[1]
stride = 2 if reduction and j < 2 else 1
node_str = "{:}<-{:}".format(i + 2, j)
self.edges[node_str] = OPS[name](
C, C, stride, affine, track_running_stats
)
if not reduction:
nodes, concats = genotype['normal'], genotype['normal_concat']
else:
nodes, concats = genotype['reduce'], genotype['reduce_concat']
self._multiplier = len(concats)
self._concats = concats
self._steps = len(nodes)
self._nodes = nodes
self.edges = nn.ModuleDict()
for i, node in enumerate(nodes):
for in_node in node:
name, j = in_node[0], in_node[1]
stride = 2 if reduction and j < 2 else 1
node_str = '{:}<-{:}'.format(i+2, j)
self.edges[node_str] = OPS[name](C, C, stride, affine, track_running_stats)
# [TODO] to support drop_prob in this function..
def forward(self, s0, s1, unused_drop_prob):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
# [TODO] to support drop_prob in this function..
def forward(self, s0, s1, unused_drop_prob):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
states = [s0, s1]
for i, node in enumerate(self._nodes):
clist = []
for in_node in node:
name, j = in_node[0], in_node[1]
node_str = '{:}<-{:}'.format(i+2, j)
op = self.edges[ node_str ]
clist.append( op(states[j]) )
states.append( sum(clist) )
return torch.cat([states[x] for x in self._concats], dim=1)
states = [s0, s1]
for i, node in enumerate(self._nodes):
clist = []
for in_node in node:
name, j = in_node[0], in_node[1]
node_str = "{:}<-{:}".format(i + 2, j)
op = self.edges[node_str]
clist.append(op(states[j]))
states.append(sum(clist))
return torch.cat([states[x] for x in self._concats], dim=1)
class AuxiliaryHeadCIFAR(nn.Module):
def __init__(self, C, num_classes):
"""assuming input size 8x8"""
super(AuxiliaryHeadCIFAR, self).__init__()
self.features = nn.Sequential(
nn.ReLU(inplace=True),
nn.AvgPool2d(
5, stride=3, padding=0, count_include_pad=False
), # image size = 2 x 2
nn.Conv2d(C, 128, 1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 768, 2, bias=False),
nn.BatchNorm2d(768),
nn.ReLU(inplace=True),
)
self.classifier = nn.Linear(768, num_classes)
def __init__(self, C, num_classes):
"""assuming input size 8x8"""
super(AuxiliaryHeadCIFAR, self).__init__()
self.features = nn.Sequential(
nn.ReLU(inplace=True),
nn.AvgPool2d(5, stride=3, padding=0, count_include_pad=False), # image size = 2 x 2
nn.Conv2d(C, 128, 1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 768, 2, bias=False),
nn.BatchNorm2d(768),
nn.ReLU(inplace=True)
)
self.classifier = nn.Linear(768, num_classes)
def forward(self, x):
x = self.features(x)
x = self.classifier(x.view(x.size(0),-1))
return x
def forward(self, x):
x = self.features(x)
x = self.classifier(x.view(x.size(0), -1))
return x

View File

@@ -9,63 +9,109 @@ from .cells import NASNetInferCell as InferCell, AuxiliaryHeadCIFAR
# The macro structure is based on NASNet
class NASNetonCIFAR(nn.Module):
def __init__(
self,
C,
N,
stem_multiplier,
num_classes,
genotype,
auxiliary,
affine=True,
track_running_stats=True,
):
super(NASNetonCIFAR, self).__init__()
self._C = C
self._layerN = N
self.stem = nn.Sequential(
nn.Conv2d(3, C * stem_multiplier, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(C * stem_multiplier),
)
def __init__(self, C, N, stem_multiplier, num_classes, genotype, auxiliary, affine=True, track_running_stats=True):
super(NASNetonCIFAR, self).__init__()
self._C = C
self._layerN = N
self.stem = nn.Sequential(
nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(C*stem_multiplier))
# config for each layer
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * (N-1) + [C*4 ] + [C*4 ] * (N-1)
layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1)
# config for each layer
layer_channels = (
[C] * N + [C * 2] + [C * 2] * (N - 1) + [C * 4] + [C * 4] * (N - 1)
)
layer_reductions = (
[False] * N + [True] + [False] * (N - 1) + [True] + [False] * (N - 1)
)
C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False
self.auxiliary_index = None
self.auxiliary_head = None
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
cell = InferCell(genotype, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats)
self.cells.append( cell )
C_prev_prev, C_prev, reduction_prev = C_prev, cell._multiplier*C_curr, reduction
if reduction and C_curr == C*4 and auxiliary:
self.auxiliary_head = AuxiliaryHeadCIFAR(C_prev, num_classes)
self.auxiliary_index = index
self._Layer = len(self.cells)
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.drop_path_prob = -1
C_prev_prev, C_prev, C_curr, reduction_prev = (
C * stem_multiplier,
C * stem_multiplier,
C,
False,
)
self.auxiliary_index = None
self.auxiliary_head = None
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(
zip(layer_channels, layer_reductions)
):
cell = InferCell(
genotype,
C_prev_prev,
C_prev,
C_curr,
reduction,
reduction_prev,
affine,
track_running_stats,
)
self.cells.append(cell)
C_prev_prev, C_prev, reduction_prev = (
C_prev,
cell._multiplier * C_curr,
reduction,
)
if reduction and C_curr == C * 4 and auxiliary:
self.auxiliary_head = AuxiliaryHeadCIFAR(C_prev, num_classes)
self.auxiliary_index = index
self._Layer = len(self.cells)
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.drop_path_prob = -1
def update_drop_path(self, drop_path_prob):
self.drop_path_prob = drop_path_prob
def update_drop_path(self, drop_path_prob):
self.drop_path_prob = drop_path_prob
def auxiliary_param(self):
if self.auxiliary_head is None: return []
else: return list( self.auxiliary_head.parameters() )
def auxiliary_param(self):
if self.auxiliary_head is None:
return []
else:
return list(self.auxiliary_head.parameters())
def get_message(self):
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
return string
def get_message(self):
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += "\n {:02d}/{:02d} :: {:}".format(
i, len(self.cells), cell.extra_repr()
)
return string
def extra_repr(self):
return ('{name}(C={_C}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
def extra_repr(self):
return "{name}(C={_C}, N={_layerN}, L={_Layer})".format(
name=self.__class__.__name__, **self.__dict__
)
def forward(self, inputs):
stem_feature, logits_aux = self.stem(inputs), None
cell_results = [stem_feature, stem_feature]
for i, cell in enumerate(self.cells):
cell_feature = cell(cell_results[-2], cell_results[-1], self.drop_path_prob)
cell_results.append( cell_feature )
if self.auxiliary_index is not None and i == self.auxiliary_index and self.training:
logits_aux = self.auxiliary_head( cell_results[-1] )
out = self.lastact(cell_results[-1])
out = self.global_pooling( out )
out = out.view(out.size(0), -1)
logits = self.classifier(out)
if logits_aux is None: return out, logits
else: return out, [logits, logits_aux]
def forward(self, inputs):
stem_feature, logits_aux = self.stem(inputs), None
cell_results = [stem_feature, stem_feature]
for i, cell in enumerate(self.cells):
cell_feature = cell(cell_results[-2], cell_results[-1], self.drop_path_prob)
cell_results.append(cell_feature)
if (
self.auxiliary_index is not None
and i == self.auxiliary_index
and self.training
):
logits_aux = self.auxiliary_head(cell_results[-1])
out = self.lastact(cell_results[-1])
out = self.global_pooling(out)
out = out.view(out.size(0), -1)
logits = self.classifier(out)
if logits_aux is None:
return out, logits
else:
return out, [logits, logits_aux]

View File

@@ -8,51 +8,56 @@ from .cells import InferCell
# The macro structure for architectures in NAS-Bench-201
class TinyNetwork(nn.Module):
def __init__(self, C, N, genotype, num_classes):
super(TinyNetwork, self).__init__()
self._C = C
self._layerN = N
def __init__(self, C, N, genotype, num_classes):
super(TinyNetwork, self).__init__()
self._C = C
self._layerN = N
self.stem = nn.Sequential(
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C)
)
self.stem = nn.Sequential(
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(C))
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
C_prev = C
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
if reduction:
cell = ResNetBasicblock(C_prev, C_curr, 2, True)
else:
cell = InferCell(genotype, C_prev, C_curr, 1)
self.cells.append( cell )
C_prev = cell.out_dim
self._Layer= len(self.cells)
C_prev = C
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(
zip(layer_channels, layer_reductions)
):
if reduction:
cell = ResNetBasicblock(C_prev, C_curr, 2, True)
else:
cell = InferCell(genotype, C_prev, C_curr, 1)
self.cells.append(cell)
C_prev = cell.out_dim
self._Layer = len(self.cells)
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
def get_message(self):
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
return string
def get_message(self):
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += "\n {:02d}/{:02d} :: {:}".format(
i, len(self.cells), cell.extra_repr()
)
return string
def extra_repr(self):
return ('{name}(C={_C}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
def extra_repr(self):
return "{name}(C={_C}, N={_layerN}, L={_Layer})".format(
name=self.__class__.__name__, **self.__dict__
)
def forward(self, inputs):
feature = self.stem(inputs)
for i, cell in enumerate(self.cells):
feature = cell(feature)
def forward(self, inputs):
feature = self.stem(inputs)
for i, cell in enumerate(self.cells):
feature = cell(feature)
out = self.lastact(feature)
out = self.global_pooling( out )
out = out.view(out.size(0), -1)
logits = self.classifier(out)
out = self.lastact(feature)
out = self.global_pooling(out)
out = out.view(out.size(0), -1)
logits = self.classifier(out)
return out, logits
return out, logits

View File

@@ -4,315 +4,550 @@
import torch
import torch.nn as nn
__all__ = ['OPS', 'RAW_OP_CLASSES', 'ResNetBasicblock', 'SearchSpaceNames']
__all__ = ["OPS", "RAW_OP_CLASSES", "ResNetBasicblock", "SearchSpaceNames"]
OPS = {
'none' : lambda C_in, C_out, stride, affine, track_running_stats: Zero(C_in, C_out, stride),
'avg_pool_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: POOLING(C_in, C_out, stride, 'avg', affine, track_running_stats),
'max_pool_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: POOLING(C_in, C_out, stride, 'max', affine, track_running_stats),
'nor_conv_7x7' : lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(C_in, C_out, (7,7), (stride,stride), (3,3), (1,1), affine, track_running_stats),
'nor_conv_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(C_in, C_out, (3,3), (stride,stride), (1,1), (1,1), affine, track_running_stats),
'nor_conv_1x1' : lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(C_in, C_out, (1,1), (stride,stride), (0,0), (1,1), affine, track_running_stats),
'dua_sepc_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: DualSepConv(C_in, C_out, (3,3), (stride,stride), (1,1), (1,1), affine, track_running_stats),
'dua_sepc_5x5' : lambda C_in, C_out, stride, affine, track_running_stats: DualSepConv(C_in, C_out, (5,5), (stride,stride), (2,2), (1,1), affine, track_running_stats),
'dil_sepc_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: SepConv(C_in, C_out, (3,3), (stride,stride), (2,2), (2,2), affine, track_running_stats),
'dil_sepc_5x5' : lambda C_in, C_out, stride, affine, track_running_stats: SepConv(C_in, C_out, (5,5), (stride,stride), (4,4), (2,2), affine, track_running_stats),
'skip_connect' : lambda C_in, C_out, stride, affine, track_running_stats: Identity() if stride == 1 and C_in == C_out else FactorizedReduce(C_in, C_out, stride, affine, track_running_stats),
"none": lambda C_in, C_out, stride, affine, track_running_stats: Zero(
C_in, C_out, stride
),
"avg_pool_3x3": lambda C_in, C_out, stride, affine, track_running_stats: POOLING(
C_in, C_out, stride, "avg", affine, track_running_stats
),
"max_pool_3x3": lambda C_in, C_out, stride, affine, track_running_stats: POOLING(
C_in, C_out, stride, "max", affine, track_running_stats
),
"nor_conv_7x7": lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(
C_in,
C_out,
(7, 7),
(stride, stride),
(3, 3),
(1, 1),
affine,
track_running_stats,
),
"nor_conv_3x3": lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(
C_in,
C_out,
(3, 3),
(stride, stride),
(1, 1),
(1, 1),
affine,
track_running_stats,
),
"nor_conv_1x1": lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(
C_in,
C_out,
(1, 1),
(stride, stride),
(0, 0),
(1, 1),
affine,
track_running_stats,
),
"dua_sepc_3x3": lambda C_in, C_out, stride, affine, track_running_stats: DualSepConv(
C_in,
C_out,
(3, 3),
(stride, stride),
(1, 1),
(1, 1),
affine,
track_running_stats,
),
"dua_sepc_5x5": lambda C_in, C_out, stride, affine, track_running_stats: DualSepConv(
C_in,
C_out,
(5, 5),
(stride, stride),
(2, 2),
(1, 1),
affine,
track_running_stats,
),
"dil_sepc_3x3": lambda C_in, C_out, stride, affine, track_running_stats: SepConv(
C_in,
C_out,
(3, 3),
(stride, stride),
(2, 2),
(2, 2),
affine,
track_running_stats,
),
"dil_sepc_5x5": lambda C_in, C_out, stride, affine, track_running_stats: SepConv(
C_in,
C_out,
(5, 5),
(stride, stride),
(4, 4),
(2, 2),
affine,
track_running_stats,
),
"skip_connect": lambda C_in, C_out, stride, affine, track_running_stats: Identity()
if stride == 1 and C_in == C_out
else FactorizedReduce(C_in, C_out, stride, affine, track_running_stats),
}
CONNECT_NAS_BENCHMARK = ['none', 'skip_connect', 'nor_conv_3x3']
NAS_BENCH_201 = ['none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3']
DARTS_SPACE = ['none', 'skip_connect', 'dua_sepc_3x3', 'dua_sepc_5x5', 'dil_sepc_3x3', 'dil_sepc_5x5', 'avg_pool_3x3', 'max_pool_3x3']
CONNECT_NAS_BENCHMARK = ["none", "skip_connect", "nor_conv_3x3"]
NAS_BENCH_201 = ["none", "skip_connect", "nor_conv_1x1", "nor_conv_3x3", "avg_pool_3x3"]
DARTS_SPACE = [
"none",
"skip_connect",
"dua_sepc_3x3",
"dua_sepc_5x5",
"dil_sepc_3x3",
"dil_sepc_5x5",
"avg_pool_3x3",
"max_pool_3x3",
]
SearchSpaceNames = {'connect-nas' : CONNECT_NAS_BENCHMARK,
'nats-bench' : NAS_BENCH_201,
'nas-bench-201': NAS_BENCH_201,
'darts' : DARTS_SPACE}
SearchSpaceNames = {
"connect-nas": CONNECT_NAS_BENCHMARK,
"nats-bench": NAS_BENCH_201,
"nas-bench-201": NAS_BENCH_201,
"darts": DARTS_SPACE,
}
class ReLUConvBN(nn.Module):
def __init__(
self,
C_in,
C_out,
kernel_size,
stride,
padding,
dilation,
affine,
track_running_stats=True,
):
super(ReLUConvBN, self).__init__()
self.op = nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(
C_in,
C_out,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=not affine,
),
nn.BatchNorm2d(
C_out, affine=affine, track_running_stats=track_running_stats
),
)
def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine, track_running_stats=True):
super(ReLUConvBN, self).__init__()
self.op = nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(C_in, C_out, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=not affine),
nn.BatchNorm2d(C_out, affine=affine, track_running_stats=track_running_stats)
)
def forward(self, x):
return self.op(x)
def forward(self, x):
return self.op(x)
class SepConv(nn.Module):
def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine, track_running_stats=True):
super(SepConv, self).__init__()
self.op = nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=C_in, bias=False),
nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=not affine),
nn.BatchNorm2d(C_out, affine=affine, track_running_stats=track_running_stats),
)
def __init__(
self,
C_in,
C_out,
kernel_size,
stride,
padding,
dilation,
affine,
track_running_stats=True,
):
super(SepConv, self).__init__()
self.op = nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(
C_in,
C_in,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=C_in,
bias=False,
),
nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=not affine),
nn.BatchNorm2d(
C_out, affine=affine, track_running_stats=track_running_stats
),
)
def forward(self, x):
return self.op(x)
def forward(self, x):
return self.op(x)
class DualSepConv(nn.Module):
def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine, track_running_stats=True):
super(DualSepConv, self).__init__()
self.op_a = SepConv(C_in, C_in , kernel_size, stride, padding, dilation, affine, track_running_stats)
self.op_b = SepConv(C_in, C_out, kernel_size, 1, padding, dilation, affine, track_running_stats)
def __init__(
self,
C_in,
C_out,
kernel_size,
stride,
padding,
dilation,
affine,
track_running_stats=True,
):
super(DualSepConv, self).__init__()
self.op_a = SepConv(
C_in,
C_in,
kernel_size,
stride,
padding,
dilation,
affine,
track_running_stats,
)
self.op_b = SepConv(
C_in, C_out, kernel_size, 1, padding, dilation, affine, track_running_stats
)
def forward(self, x):
x = self.op_a(x)
x = self.op_b(x)
return x
def forward(self, x):
x = self.op_a(x)
x = self.op_b(x)
return x
class ResNetBasicblock(nn.Module):
def __init__(self, inplanes, planes, stride, affine=True, track_running_stats=True):
super(ResNetBasicblock, self).__init__()
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
self.conv_a = ReLUConvBN(
inplanes, planes, 3, stride, 1, 1, affine, track_running_stats
)
self.conv_b = ReLUConvBN(
planes, planes, 3, 1, 1, 1, affine, track_running_stats
)
if stride == 2:
self.downsample = nn.Sequential(
nn.AvgPool2d(kernel_size=2, stride=2, padding=0),
nn.Conv2d(
inplanes, planes, kernel_size=1, stride=1, padding=0, bias=False
),
)
elif inplanes != planes:
self.downsample = ReLUConvBN(
inplanes, planes, 1, 1, 0, 1, affine, track_running_stats
)
else:
self.downsample = None
self.in_dim = inplanes
self.out_dim = planes
self.stride = stride
self.num_conv = 2
def __init__(self, inplanes, planes, stride, affine=True, track_running_stats=True):
super(ResNetBasicblock, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
self.conv_a = ReLUConvBN(inplanes, planes, 3, stride, 1, 1, affine, track_running_stats)
self.conv_b = ReLUConvBN( planes, planes, 3, 1, 1, 1, affine, track_running_stats)
if stride == 2:
self.downsample = nn.Sequential(
nn.AvgPool2d(kernel_size=2, stride=2, padding=0),
nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, padding=0, bias=False))
elif inplanes != planes:
self.downsample = ReLUConvBN(inplanes, planes, 1, 1, 0, 1, affine, track_running_stats)
else:
self.downsample = None
self.in_dim = inplanes
self.out_dim = planes
self.stride = stride
self.num_conv = 2
def extra_repr(self):
string = "{name}(inC={in_dim}, outC={out_dim}, stride={stride})".format(
name=self.__class__.__name__, **self.__dict__
)
return string
def extra_repr(self):
string = '{name}(inC={in_dim}, outC={out_dim}, stride={stride})'.format(name=self.__class__.__name__, **self.__dict__)
return string
def forward(self, inputs):
def forward(self, inputs):
basicblock = self.conv_a(inputs)
basicblock = self.conv_b(basicblock)
basicblock = self.conv_a(inputs)
basicblock = self.conv_b(basicblock)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
return residual + basicblock
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
return residual + basicblock
class POOLING(nn.Module):
def __init__(
self, C_in, C_out, stride, mode, affine=True, track_running_stats=True
):
super(POOLING, self).__init__()
if C_in == C_out:
self.preprocess = None
else:
self.preprocess = ReLUConvBN(
C_in, C_out, 1, 1, 0, 1, affine, track_running_stats
)
if mode == "avg":
self.op = nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False)
elif mode == "max":
self.op = nn.MaxPool2d(3, stride=stride, padding=1)
else:
raise ValueError("Invalid mode={:} in POOLING".format(mode))
def __init__(self, C_in, C_out, stride, mode, affine=True, track_running_stats=True):
super(POOLING, self).__init__()
if C_in == C_out:
self.preprocess = None
else:
self.preprocess = ReLUConvBN(C_in, C_out, 1, 1, 0, 1, affine, track_running_stats)
if mode == 'avg' : self.op = nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False)
elif mode == 'max': self.op = nn.MaxPool2d(3, stride=stride, padding=1)
else : raise ValueError('Invalid mode={:} in POOLING'.format(mode))
def forward(self, inputs):
if self.preprocess: x = self.preprocess(inputs)
else : x = inputs
return self.op(x)
def forward(self, inputs):
if self.preprocess:
x = self.preprocess(inputs)
else:
x = inputs
return self.op(x)
class Identity(nn.Module):
def __init__(self):
super(Identity, self).__init__()
def __init__(self):
super(Identity, self).__init__()
def forward(self, x):
return x
def forward(self, x):
return x
class Zero(nn.Module):
def __init__(self, C_in, C_out, stride):
super(Zero, self).__init__()
self.C_in = C_in
self.C_out = C_out
self.stride = stride
self.is_zero = True
def __init__(self, C_in, C_out, stride):
super(Zero, self).__init__()
self.C_in = C_in
self.C_out = C_out
self.stride = stride
self.is_zero = True
def forward(self, x):
if self.C_in == self.C_out:
if self.stride == 1:
return x.mul(0.0)
else:
return x[:, :, :: self.stride, :: self.stride].mul(0.0)
else:
shape = list(x.shape)
shape[1] = self.C_out
zeros = x.new_zeros(shape, dtype=x.dtype, device=x.device)
return zeros
def forward(self, x):
if self.C_in == self.C_out:
if self.stride == 1: return x.mul(0.)
else : return x[:,:,::self.stride,::self.stride].mul(0.)
else:
shape = list(x.shape)
shape[1] = self.C_out
zeros = x.new_zeros(shape, dtype=x.dtype, device=x.device)
return zeros
def extra_repr(self):
return 'C_in={C_in}, C_out={C_out}, stride={stride}'.format(**self.__dict__)
def extra_repr(self):
return "C_in={C_in}, C_out={C_out}, stride={stride}".format(**self.__dict__)
class FactorizedReduce(nn.Module):
def __init__(self, C_in, C_out, stride, affine, track_running_stats):
super(FactorizedReduce, self).__init__()
self.stride = stride
self.C_in = C_in
self.C_out = C_out
self.relu = nn.ReLU(inplace=False)
if stride == 2:
# assert C_out % 2 == 0, 'C_out : {:}'.format(C_out)
C_outs = [C_out // 2, C_out - C_out // 2]
self.convs = nn.ModuleList()
for i in range(2):
self.convs.append(
nn.Conv2d(
C_in, C_outs[i], 1, stride=stride, padding=0, bias=not affine
)
)
self.pad = nn.ConstantPad2d((0, 1, 0, 1), 0)
elif stride == 1:
self.conv = nn.Conv2d(
C_in, C_out, 1, stride=stride, padding=0, bias=not affine
)
else:
raise ValueError("Invalid stride : {:}".format(stride))
self.bn = nn.BatchNorm2d(
C_out, affine=affine, track_running_stats=track_running_stats
)
def __init__(self, C_in, C_out, stride, affine, track_running_stats):
super(FactorizedReduce, self).__init__()
self.stride = stride
self.C_in = C_in
self.C_out = C_out
self.relu = nn.ReLU(inplace=False)
if stride == 2:
#assert C_out % 2 == 0, 'C_out : {:}'.format(C_out)
C_outs = [C_out // 2, C_out - C_out // 2]
self.convs = nn.ModuleList()
for i in range(2):
self.convs.append(nn.Conv2d(C_in, C_outs[i], 1, stride=stride, padding=0, bias=not affine))
self.pad = nn.ConstantPad2d((0, 1, 0, 1), 0)
elif stride == 1:
self.conv = nn.Conv2d(C_in, C_out, 1, stride=stride, padding=0, bias=not affine)
else:
raise ValueError('Invalid stride : {:}'.format(stride))
self.bn = nn.BatchNorm2d(C_out, affine=affine, track_running_stats=track_running_stats)
def forward(self, x):
if self.stride == 2:
x = self.relu(x)
y = self.pad(x)
out = torch.cat([self.convs[0](x), self.convs[1](y[:, :, 1:, 1:])], dim=1)
else:
out = self.conv(x)
out = self.bn(out)
return out
def forward(self, x):
if self.stride == 2:
x = self.relu(x)
y = self.pad(x)
out = torch.cat([self.convs[0](x), self.convs[1](y[:,:,1:,1:])], dim=1)
else:
out = self.conv(x)
out = self.bn(out)
return out
def extra_repr(self):
return 'C_in={C_in}, C_out={C_out}, stride={stride}'.format(**self.__dict__)
def extra_repr(self):
return "C_in={C_in}, C_out={C_out}, stride={stride}".format(**self.__dict__)
# Auto-ReID: Searching for a Part-Aware ConvNet for Person Re-Identification, ICCV 2019
class PartAwareOp(nn.Module):
def __init__(self, C_in, C_out, stride, part=4):
super().__init__()
self.part = 4
self.hidden = C_in // 3
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.local_conv_list = nn.ModuleList()
for i in range(self.part):
self.local_conv_list.append(
nn.Sequential(nn.ReLU(), nn.Conv2d(C_in, self.hidden, 1), nn.BatchNorm2d(self.hidden, affine=True))
def __init__(self, C_in, C_out, stride, part=4):
super().__init__()
self.part = 4
self.hidden = C_in // 3
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.local_conv_list = nn.ModuleList()
for i in range(self.part):
self.local_conv_list.append(
nn.Sequential(
nn.ReLU(),
nn.Conv2d(C_in, self.hidden, 1),
nn.BatchNorm2d(self.hidden, affine=True),
)
)
self.W_K = nn.Linear(self.hidden, self.hidden)
self.W_Q = nn.Linear(self.hidden, self.hidden)
self.W_K = nn.Linear(self.hidden, self.hidden)
self.W_Q = nn.Linear(self.hidden, self.hidden)
if stride == 2 : self.last = FactorizedReduce(C_in + self.hidden, C_out, 2)
elif stride == 1: self.last = FactorizedReduce(C_in + self.hidden, C_out, 1)
else: raise ValueError('Invalid Stride : {:}'.format(stride))
if stride == 2:
self.last = FactorizedReduce(C_in + self.hidden, C_out, 2)
elif stride == 1:
self.last = FactorizedReduce(C_in + self.hidden, C_out, 1)
else:
raise ValueError("Invalid Stride : {:}".format(stride))
def forward(self, x):
batch, C, H, W = x.size()
assert H >= self.part, 'input size too small : {:} vs {:}'.format(x.shape, self.part)
IHs = [0]
for i in range(self.part): IHs.append( min(H, int((i+1)*(float(H)/self.part))) )
local_feat_list = []
for i in range(self.part):
feature = x[:, :, IHs[i]:IHs[i+1], :]
xfeax = self.avg_pool(feature)
xfea = self.local_conv_list[i]( xfeax )
local_feat_list.append( xfea )
part_feature = torch.cat(local_feat_list, dim=2).view(batch, -1, self.part)
part_feature = part_feature.transpose(1,2).contiguous()
part_K = self.W_K(part_feature)
part_Q = self.W_Q(part_feature).transpose(1,2).contiguous()
weight_att = torch.bmm(part_K, part_Q)
attention = torch.softmax(weight_att, dim=2)
aggreateF = torch.bmm(attention, part_feature).transpose(1,2).contiguous()
features = []
for i in range(self.part):
feature = aggreateF[:, :, i:i+1].expand(batch, self.hidden, IHs[i+1]-IHs[i])
feature = feature.view(batch, self.hidden, IHs[i+1]-IHs[i], 1)
features.append( feature )
features = torch.cat(features, dim=2).expand(batch, self.hidden, H, W)
final_fea = torch.cat((x,features), dim=1)
outputs = self.last( final_fea )
return outputs
def forward(self, x):
batch, C, H, W = x.size()
assert H >= self.part, "input size too small : {:} vs {:}".format(
x.shape, self.part
)
IHs = [0]
for i in range(self.part):
IHs.append(min(H, int((i + 1) * (float(H) / self.part))))
local_feat_list = []
for i in range(self.part):
feature = x[:, :, IHs[i] : IHs[i + 1], :]
xfeax = self.avg_pool(feature)
xfea = self.local_conv_list[i](xfeax)
local_feat_list.append(xfea)
part_feature = torch.cat(local_feat_list, dim=2).view(batch, -1, self.part)
part_feature = part_feature.transpose(1, 2).contiguous()
part_K = self.W_K(part_feature)
part_Q = self.W_Q(part_feature).transpose(1, 2).contiguous()
weight_att = torch.bmm(part_K, part_Q)
attention = torch.softmax(weight_att, dim=2)
aggreateF = torch.bmm(attention, part_feature).transpose(1, 2).contiguous()
features = []
for i in range(self.part):
feature = aggreateF[:, :, i : i + 1].expand(
batch, self.hidden, IHs[i + 1] - IHs[i]
)
feature = feature.view(batch, self.hidden, IHs[i + 1] - IHs[i], 1)
features.append(feature)
features = torch.cat(features, dim=2).expand(batch, self.hidden, H, W)
final_fea = torch.cat((x, features), dim=1)
outputs = self.last(final_fea)
return outputs
def drop_path(x, drop_prob):
if drop_prob > 0.:
keep_prob = 1. - drop_prob
mask = x.new_zeros(x.size(0), 1, 1, 1)
mask = mask.bernoulli_(keep_prob)
x = torch.div(x, keep_prob)
x.mul_(mask)
return x
if drop_prob > 0.0:
keep_prob = 1.0 - drop_prob
mask = x.new_zeros(x.size(0), 1, 1, 1)
mask = mask.bernoulli_(keep_prob)
x = torch.div(x, keep_prob)
x.mul_(mask)
return x
# Searching for A Robust Neural Architecture in Four GPU Hours
class GDAS_Reduction_Cell(nn.Module):
def __init__(
self, C_prev_prev, C_prev, C, reduction_prev, affine, track_running_stats
):
super(GDAS_Reduction_Cell, self).__init__()
if reduction_prev:
self.preprocess0 = FactorizedReduce(
C_prev_prev, C, 2, affine, track_running_stats
)
else:
self.preprocess0 = ReLUConvBN(
C_prev_prev, C, 1, 1, 0, 1, affine, track_running_stats
)
self.preprocess1 = ReLUConvBN(
C_prev, C, 1, 1, 0, 1, affine, track_running_stats
)
def __init__(self, C_prev_prev, C_prev, C, reduction_prev, affine, track_running_stats):
super(GDAS_Reduction_Cell, self).__init__()
if reduction_prev:
self.preprocess0 = FactorizedReduce(C_prev_prev, C, 2, affine, track_running_stats)
else:
self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, 1, affine, track_running_stats)
self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, 1, affine, track_running_stats)
self.reduction = True
self.ops1 = nn.ModuleList(
[
nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(
C,
C,
(1, 3),
stride=(1, 2),
padding=(0, 1),
groups=8,
bias=not affine,
),
nn.Conv2d(
C,
C,
(3, 1),
stride=(2, 1),
padding=(1, 0),
groups=8,
bias=not affine,
),
nn.BatchNorm2d(
C, affine=affine, track_running_stats=track_running_stats
),
nn.ReLU(inplace=False),
nn.Conv2d(C, C, 1, stride=1, padding=0, bias=not affine),
nn.BatchNorm2d(
C, affine=affine, track_running_stats=track_running_stats
),
),
nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(
C,
C,
(1, 3),
stride=(1, 2),
padding=(0, 1),
groups=8,
bias=not affine,
),
nn.Conv2d(
C,
C,
(3, 1),
stride=(2, 1),
padding=(1, 0),
groups=8,
bias=not affine,
),
nn.BatchNorm2d(
C, affine=affine, track_running_stats=track_running_stats
),
nn.ReLU(inplace=False),
nn.Conv2d(C, C, 1, stride=1, padding=0, bias=not affine),
nn.BatchNorm2d(
C, affine=affine, track_running_stats=track_running_stats
),
),
]
)
self.reduction = True
self.ops1 = nn.ModuleList(
[nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(C, C, (1, 3), stride=(1, 2), padding=(0, 1), groups=8, bias=not affine),
nn.Conv2d(C, C, (3, 1), stride=(2, 1), padding=(1, 0), groups=8, bias=not affine),
nn.BatchNorm2d(C, affine=affine, track_running_stats=track_running_stats),
nn.ReLU(inplace=False),
nn.Conv2d(C, C, 1, stride=1, padding=0, bias=not affine),
nn.BatchNorm2d(C, affine=affine, track_running_stats=track_running_stats)),
nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(C, C, (1, 3), stride=(1, 2), padding=(0, 1), groups=8, bias=not affine),
nn.Conv2d(C, C, (3, 1), stride=(2, 1), padding=(1, 0), groups=8, bias=not affine),
nn.BatchNorm2d(C, affine=affine, track_running_stats=track_running_stats),
nn.ReLU(inplace=False),
nn.Conv2d(C, C, 1, stride=1, padding=0, bias=not affine),
nn.BatchNorm2d(C, affine=affine, track_running_stats=track_running_stats))])
self.ops2 = nn.ModuleList(
[
nn.Sequential(
nn.MaxPool2d(3, stride=2, padding=1),
nn.BatchNorm2d(
C, affine=affine, track_running_stats=track_running_stats
),
),
nn.Sequential(
nn.MaxPool2d(3, stride=2, padding=1),
nn.BatchNorm2d(
C, affine=affine, track_running_stats=track_running_stats
),
),
]
)
self.ops2 = nn.ModuleList(
[nn.Sequential(
nn.MaxPool2d(3, stride=2, padding=1),
nn.BatchNorm2d(C, affine=affine, track_running_stats=track_running_stats)),
nn.Sequential(
nn.MaxPool2d(3, stride=2, padding=1),
nn.BatchNorm2d(C, affine=affine, track_running_stats=track_running_stats))])
@property
def multiplier(self):
return 4
@property
def multiplier(self):
return 4
def forward(self, s0, s1, drop_prob=-1):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
def forward(self, s0, s1, drop_prob = -1):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
X0 = self.ops1[0](s0)
X1 = self.ops1[1](s1)
if self.training and drop_prob > 0.0:
X0, X1 = drop_path(X0, drop_prob), drop_path(X1, drop_prob)
X0 = self.ops1[0] (s0)
X1 = self.ops1[1] (s1)
if self.training and drop_prob > 0.:
X0, X1 = drop_path(X0, drop_prob), drop_path(X1, drop_prob)
#X2 = self.ops2[0] (X0+X1)
X2 = self.ops2[0] (s0)
X3 = self.ops2[1] (s1)
if self.training and drop_prob > 0.:
X2, X3 = drop_path(X2, drop_prob), drop_path(X3, drop_prob)
return torch.cat([X0, X1, X2, X3], dim=1)
# X2 = self.ops2[0] (X0+X1)
X2 = self.ops2[0](s0)
X3 = self.ops2[1](s1)
if self.training and drop_prob > 0.0:
X2, X3 = drop_path(X2, drop_prob), drop_path(X3, drop_prob)
return torch.cat([X0, X1, X2, X3], dim=1)
# To manage the useful classes in this file.
RAW_OP_CLASSES = {
'gdas_reduction': GDAS_Reduction_Cell
}
RAW_OP_CLASSES = {"gdas_reduction": GDAS_Reduction_Cell}

View File

@@ -2,27 +2,32 @@
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
# The macro structure is defined in NAS-Bench-201
from .search_model_darts import TinyNetworkDarts
from .search_model_gdas import TinyNetworkGDAS
from .search_model_setn import TinyNetworkSETN
from .search_model_enas import TinyNetworkENAS
from .search_model_random import TinyNetworkRANDOM
from .generic_model import GenericNAS201Model
from .genotypes import Structure as CellStructure, architectures as CellArchitectures
from .search_model_darts import TinyNetworkDarts
from .search_model_gdas import TinyNetworkGDAS
from .search_model_setn import TinyNetworkSETN
from .search_model_enas import TinyNetworkENAS
from .search_model_random import TinyNetworkRANDOM
from .generic_model import GenericNAS201Model
from .genotypes import Structure as CellStructure, architectures as CellArchitectures
# NASNet-based macro structure
from .search_model_gdas_nasnet import NASNetworkGDAS
from .search_model_gdas_frc_nasnet import NASNetworkGDAS_FRC
from .search_model_darts_nasnet import NASNetworkDARTS
nas201_super_nets = {'DARTS-V1': TinyNetworkDarts,
"DARTS-V2": TinyNetworkDarts,
"GDAS": TinyNetworkGDAS,
"SETN": TinyNetworkSETN,
"ENAS": TinyNetworkENAS,
"RANDOM": TinyNetworkRANDOM,
"generic": GenericNAS201Model}
nas201_super_nets = {
"DARTS-V1": TinyNetworkDarts,
"DARTS-V2": TinyNetworkDarts,
"GDAS": TinyNetworkGDAS,
"SETN": TinyNetworkSETN,
"ENAS": TinyNetworkENAS,
"RANDOM": TinyNetworkRANDOM,
"generic": GenericNAS201Model,
}
nasnet_super_nets = {"GDAS": NASNetworkGDAS,
"GDAS_FRC": NASNetworkGDAS_FRC,
"DARTS": NASNetworkDARTS}
nasnet_super_nets = {
"GDAS": NASNetworkGDAS,
"GDAS_FRC": NASNetworkGDAS_FRC,
"DARTS": NASNetworkDARTS,
}

View File

@@ -4,9 +4,11 @@
import torch
from search_model_enas_utils import Controller
def main():
controller = Controller(6, 4)
predictions = controller()
if __name__ == '__main__':
main()
def main():
controller = Controller(6, 4)
predictions = controller()
if __name__ == "__main__":
main()

View File

@@ -8,296 +8,355 @@ from typing import Text
from torch.distributions.categorical import Categorical
from ..cell_operations import ResNetBasicblock, drop_path
from .search_cells import NAS201SearchCell as SearchCell
from .genotypes import Structure
from .search_cells import NAS201SearchCell as SearchCell
from .genotypes import Structure
class Controller(nn.Module):
# we refer to https://github.com/TDeVries/enas_pytorch/blob/master/models/controller.py
def __init__(self, edge2index, op_names, max_nodes, lstm_size=32, lstm_num_layers=2, tanh_constant=2.5, temperature=5.0):
super(Controller, self).__init__()
# assign the attributes
self.max_nodes = max_nodes
self.num_edge = len(edge2index)
self.edge2index = edge2index
self.num_ops = len(op_names)
self.op_names = op_names
self.lstm_size = lstm_size
self.lstm_N = lstm_num_layers
self.tanh_constant = tanh_constant
self.temperature = temperature
# create parameters
self.register_parameter('input_vars', nn.Parameter(torch.Tensor(1, 1, lstm_size)))
self.w_lstm = nn.LSTM(input_size=self.lstm_size, hidden_size=self.lstm_size, num_layers=self.lstm_N)
self.w_embd = nn.Embedding(self.num_ops, self.lstm_size)
self.w_pred = nn.Linear(self.lstm_size, self.num_ops)
# we refer to https://github.com/TDeVries/enas_pytorch/blob/master/models/controller.py
def __init__(
self,
edge2index,
op_names,
max_nodes,
lstm_size=32,
lstm_num_layers=2,
tanh_constant=2.5,
temperature=5.0,
):
super(Controller, self).__init__()
# assign the attributes
self.max_nodes = max_nodes
self.num_edge = len(edge2index)
self.edge2index = edge2index
self.num_ops = len(op_names)
self.op_names = op_names
self.lstm_size = lstm_size
self.lstm_N = lstm_num_layers
self.tanh_constant = tanh_constant
self.temperature = temperature
# create parameters
self.register_parameter(
"input_vars", nn.Parameter(torch.Tensor(1, 1, lstm_size))
)
self.w_lstm = nn.LSTM(
input_size=self.lstm_size,
hidden_size=self.lstm_size,
num_layers=self.lstm_N,
)
self.w_embd = nn.Embedding(self.num_ops, self.lstm_size)
self.w_pred = nn.Linear(self.lstm_size, self.num_ops)
nn.init.uniform_(self.input_vars , -0.1, 0.1)
nn.init.uniform_(self.w_lstm.weight_hh_l0, -0.1, 0.1)
nn.init.uniform_(self.w_lstm.weight_ih_l0, -0.1, 0.1)
nn.init.uniform_(self.w_embd.weight , -0.1, 0.1)
nn.init.uniform_(self.w_pred.weight , -0.1, 0.1)
nn.init.uniform_(self.input_vars, -0.1, 0.1)
nn.init.uniform_(self.w_lstm.weight_hh_l0, -0.1, 0.1)
nn.init.uniform_(self.w_lstm.weight_ih_l0, -0.1, 0.1)
nn.init.uniform_(self.w_embd.weight, -0.1, 0.1)
nn.init.uniform_(self.w_pred.weight, -0.1, 0.1)
def convert_structure(self, _arch):
genotypes = []
for i in range(1, self.max_nodes):
xlist = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
op_index = _arch[self.edge2index[node_str]]
op_name = self.op_names[op_index]
xlist.append((op_name, j))
genotypes.append( tuple(xlist) )
return Structure(genotypes)
def convert_structure(self, _arch):
genotypes = []
for i in range(1, self.max_nodes):
xlist = []
for j in range(i):
node_str = "{:}<-{:}".format(i, j)
op_index = _arch[self.edge2index[node_str]]
op_name = self.op_names[op_index]
xlist.append((op_name, j))
genotypes.append(tuple(xlist))
return Structure(genotypes)
def forward(self):
def forward(self):
inputs, h0 = self.input_vars, None
log_probs, entropys, sampled_arch = [], [], []
for iedge in range(self.num_edge):
outputs, h0 = self.w_lstm(inputs, h0)
logits = self.w_pred(outputs)
logits = logits / self.temperature
logits = self.tanh_constant * torch.tanh(logits)
# distribution
op_distribution = Categorical(logits=logits)
op_index = op_distribution.sample()
sampled_arch.append( op_index.item() )
inputs, h0 = self.input_vars, None
log_probs, entropys, sampled_arch = [], [], []
for iedge in range(self.num_edge):
outputs, h0 = self.w_lstm(inputs, h0)
op_log_prob = op_distribution.log_prob(op_index)
log_probs.append( op_log_prob.view(-1) )
op_entropy = op_distribution.entropy()
entropys.append( op_entropy.view(-1) )
# obtain the input embedding for the next step
inputs = self.w_embd(op_index)
return torch.sum(torch.cat(log_probs)), torch.sum(torch.cat(entropys)), self.convert_structure(sampled_arch)
logits = self.w_pred(outputs)
logits = logits / self.temperature
logits = self.tanh_constant * torch.tanh(logits)
# distribution
op_distribution = Categorical(logits=logits)
op_index = op_distribution.sample()
sampled_arch.append(op_index.item())
op_log_prob = op_distribution.log_prob(op_index)
log_probs.append(op_log_prob.view(-1))
op_entropy = op_distribution.entropy()
entropys.append(op_entropy.view(-1))
# obtain the input embedding for the next step
inputs = self.w_embd(op_index)
return (
torch.sum(torch.cat(log_probs)),
torch.sum(torch.cat(entropys)),
self.convert_structure(sampled_arch),
)
class GenericNAS201Model(nn.Module):
def __init__(
self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats
):
super(GenericNAS201Model, self).__init__()
self._C = C
self._layerN = N
self._max_nodes = max_nodes
self._stem = nn.Sequential(
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C)
)
layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
C_prev, num_edge, edge2index = C, None, None
self._cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(
zip(layer_channels, layer_reductions)
):
if reduction:
cell = ResNetBasicblock(C_prev, C_curr, 2)
else:
cell = SearchCell(
C_prev,
C_curr,
1,
max_nodes,
search_space,
affine,
track_running_stats,
)
if num_edge is None:
num_edge, edge2index = cell.num_edges, cell.edge2index
else:
assert (
num_edge == cell.num_edges and edge2index == cell.edge2index
), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges)
self._cells.append(cell)
C_prev = cell.out_dim
self._op_names = deepcopy(search_space)
self._Layer = len(self._cells)
self.edge2index = edge2index
self.lastact = nn.Sequential(
nn.BatchNorm2d(
C_prev, affine=affine, track_running_stats=track_running_stats
),
nn.ReLU(inplace=True),
)
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self._num_edge = num_edge
# algorithm related
self.arch_parameters = nn.Parameter(
1e-3 * torch.randn(num_edge, len(search_space))
)
self._mode = None
self.dynamic_cell = None
self._tau = None
self._algo = None
self._drop_path = None
self.verbose = False
def __init__(self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats):
super(GenericNAS201Model, self).__init__()
self._C = C
self._layerN = N
self._max_nodes = max_nodes
self._stem = nn.Sequential(
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(C))
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
C_prev, num_edge, edge2index = C, None, None
self._cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
if reduction:
cell = ResNetBasicblock(C_prev, C_curr, 2)
else:
cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine, track_running_stats)
if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
self._cells.append(cell)
C_prev = cell.out_dim
self._op_names = deepcopy(search_space)
self._Layer = len(self._cells)
self.edge2index = edge2index
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev, affine=affine, track_running_stats=track_running_stats), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self._num_edge = num_edge
# algorithm related
self.arch_parameters = nn.Parameter(1e-3*torch.randn(num_edge, len(search_space)))
self._mode = None
self.dynamic_cell = None
self._tau = None
self._algo = None
self._drop_path = None
self.verbose = False
def set_algo(self, algo: Text):
# used for searching
assert self._algo is None, 'This functioin can only be called once.'
self._algo = algo
if algo == 'enas':
self.controller = Controller(self.edge2index, self._op_names, self._max_nodes)
else:
self.arch_parameters = nn.Parameter( 1e-3*torch.randn(self._num_edge, len(self._op_names)) )
if algo == 'gdas':
self._tau = 10
def set_cal_mode(self, mode, dynamic_cell=None):
assert mode in ['gdas', 'enas', 'urs', 'joint', 'select', 'dynamic']
self._mode = mode
if mode == 'dynamic': self.dynamic_cell = deepcopy(dynamic_cell)
else : self.dynamic_cell = None
def set_drop_path(self, progress, drop_path_rate):
if drop_path_rate is None:
self._drop_path = None
elif progress is None:
self._drop_path = drop_path_rate
else:
self._drop_path = progress * drop_path_rate
@property
def mode(self):
return self._mode
@property
def drop_path(self):
return self._drop_path
@property
def weights(self):
xlist = list(self._stem.parameters())
xlist+= list(self._cells.parameters())
xlist+= list(self.lastact.parameters())
xlist+= list(self.global_pooling.parameters())
xlist+= list(self.classifier.parameters())
return xlist
def set_tau(self, tau):
self._tau = tau
@property
def tau(self):
return self._tau
@property
def alphas(self):
if self._algo == 'enas':
return list(self.controller.parameters())
else:
return [self.arch_parameters]
@property
def message(self):
string = self.extra_repr()
for i, cell in enumerate(self._cells):
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self._cells), cell.extra_repr())
return string
def show_alphas(self):
with torch.no_grad():
if self._algo == 'enas':
return 'w_pred :\n{:}'.format(self.controller.w_pred.weight)
else:
return 'arch-parameters :\n{:}'.format(nn.functional.softmax(self.arch_parameters, dim=-1).cpu())
def extra_repr(self):
return ('{name}(C={_C}, Max-Nodes={_max_nodes}, N={_layerN}, L={_Layer}, alg={_algo})'.format(name=self.__class__.__name__, **self.__dict__))
@property
def genotype(self):
genotypes = []
for i in range(1, self._max_nodes):
xlist = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
with torch.no_grad():
weights = self.arch_parameters[ self.edge2index[node_str] ]
op_name = self._op_names[ weights.argmax().item() ]
xlist.append((op_name, j))
genotypes.append(tuple(xlist))
return Structure(genotypes)
def dync_genotype(self, use_random=False):
genotypes = []
with torch.no_grad():
alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1)
for i in range(1, self._max_nodes):
xlist = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
if use_random:
op_name = random.choice(self._op_names)
def set_algo(self, algo: Text):
# used for searching
assert self._algo is None, "This functioin can only be called once."
self._algo = algo
if algo == "enas":
self.controller = Controller(
self.edge2index, self._op_names, self._max_nodes
)
else:
weights = alphas_cpu[ self.edge2index[node_str] ]
op_index = torch.multinomial(weights, 1).item()
op_name = self._op_names[ op_index ]
xlist.append((op_name, j))
genotypes.append(tuple(xlist))
return Structure(genotypes)
self.arch_parameters = nn.Parameter(
1e-3 * torch.randn(self._num_edge, len(self._op_names))
)
if algo == "gdas":
self._tau = 10
def get_log_prob(self, arch):
with torch.no_grad():
logits = nn.functional.log_softmax(self.arch_parameters, dim=-1)
select_logits = []
for i, node_info in enumerate(arch.nodes):
for op, xin in node_info:
node_str = '{:}<-{:}'.format(i+1, xin)
op_index = self._op_names.index(op)
select_logits.append( logits[self.edge2index[node_str], op_index] )
return sum(select_logits).item()
def set_cal_mode(self, mode, dynamic_cell=None):
assert mode in ["gdas", "enas", "urs", "joint", "select", "dynamic"]
self._mode = mode
if mode == "dynamic":
self.dynamic_cell = deepcopy(dynamic_cell)
else:
self.dynamic_cell = None
def return_topK(self, K, use_random=False):
archs = Structure.gen_all(self._op_names, self._max_nodes, False)
pairs = [(self.get_log_prob(arch), arch) for arch in archs]
if K < 0 or K >= len(archs): K = len(archs)
if use_random:
return random.sample(archs, K)
else:
sorted_pairs = sorted(pairs, key=lambda x: -x[0])
return_pairs = [sorted_pairs[_][1] for _ in range(K)]
return return_pairs
def set_drop_path(self, progress, drop_path_rate):
if drop_path_rate is None:
self._drop_path = None
elif progress is None:
self._drop_path = drop_path_rate
else:
self._drop_path = progress * drop_path_rate
def normalize_archp(self):
if self.mode == 'gdas':
while True:
gumbels = -torch.empty_like(self.arch_parameters).exponential_().log()
logits = (self.arch_parameters.log_softmax(dim=1) + gumbels) / self.tau
probs = nn.functional.softmax(logits, dim=1)
index = probs.max(-1, keepdim=True)[1]
one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0)
hardwts = one_h - probs.detach() + probs
if (torch.isinf(gumbels).any()) or (torch.isinf(probs).any()) or (torch.isnan(probs).any()):
continue
else: break
with torch.no_grad():
hardwts_cpu = hardwts.detach().cpu()
return hardwts, hardwts_cpu, index, 'GUMBEL'
else:
alphas = nn.functional.softmax(self.arch_parameters, dim=-1)
index = alphas.max(-1, keepdim=True)[1]
with torch.no_grad():
alphas_cpu = alphas.detach().cpu()
return alphas, alphas_cpu, index, 'SOFTMAX'
@property
def mode(self):
return self._mode
def forward(self, inputs):
alphas, alphas_cpu, index, verbose_str = self.normalize_archp()
feature = self._stem(inputs)
for i, cell in enumerate(self._cells):
if isinstance(cell, SearchCell):
if self.mode == 'urs':
feature = cell.forward_urs(feature)
if self.verbose:
verbose_str += '-forward_urs'
elif self.mode == 'select':
feature = cell.forward_select(feature, alphas_cpu)
if self.verbose:
verbose_str += '-forward_select'
elif self.mode == 'joint':
feature = cell.forward_joint(feature, alphas)
if self.verbose:
verbose_str += '-forward_joint'
elif self.mode == 'dynamic':
feature = cell.forward_dynamic(feature, self.dynamic_cell)
if self.verbose:
verbose_str += '-forward_dynamic'
elif self.mode == 'gdas':
feature = cell.forward_gdas(feature, alphas, index)
if self.verbose:
verbose_str += '-forward_gdas'
else: raise ValueError('invalid mode={:}'.format(self.mode))
else: feature = cell(feature)
if self.drop_path is not None:
feature = drop_path(feature, self.drop_path)
if self.verbose and random.random() < 0.001:
print(verbose_str)
out = self.lastact(feature)
out = self.global_pooling(out)
out = out.view(out.size(0), -1)
logits = self.classifier(out)
return out, logits
@property
def drop_path(self):
return self._drop_path
@property
def weights(self):
xlist = list(self._stem.parameters())
xlist += list(self._cells.parameters())
xlist += list(self.lastact.parameters())
xlist += list(self.global_pooling.parameters())
xlist += list(self.classifier.parameters())
return xlist
def set_tau(self, tau):
self._tau = tau
@property
def tau(self):
return self._tau
@property
def alphas(self):
if self._algo == "enas":
return list(self.controller.parameters())
else:
return [self.arch_parameters]
@property
def message(self):
string = self.extra_repr()
for i, cell in enumerate(self._cells):
string += "\n {:02d}/{:02d} :: {:}".format(
i, len(self._cells), cell.extra_repr()
)
return string
def show_alphas(self):
with torch.no_grad():
if self._algo == "enas":
return "w_pred :\n{:}".format(self.controller.w_pred.weight)
else:
return "arch-parameters :\n{:}".format(
nn.functional.softmax(self.arch_parameters, dim=-1).cpu()
)
def extra_repr(self):
return "{name}(C={_C}, Max-Nodes={_max_nodes}, N={_layerN}, L={_Layer}, alg={_algo})".format(
name=self.__class__.__name__, **self.__dict__
)
@property
def genotype(self):
genotypes = []
for i in range(1, self._max_nodes):
xlist = []
for j in range(i):
node_str = "{:}<-{:}".format(i, j)
with torch.no_grad():
weights = self.arch_parameters[self.edge2index[node_str]]
op_name = self._op_names[weights.argmax().item()]
xlist.append((op_name, j))
genotypes.append(tuple(xlist))
return Structure(genotypes)
def dync_genotype(self, use_random=False):
genotypes = []
with torch.no_grad():
alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1)
for i in range(1, self._max_nodes):
xlist = []
for j in range(i):
node_str = "{:}<-{:}".format(i, j)
if use_random:
op_name = random.choice(self._op_names)
else:
weights = alphas_cpu[self.edge2index[node_str]]
op_index = torch.multinomial(weights, 1).item()
op_name = self._op_names[op_index]
xlist.append((op_name, j))
genotypes.append(tuple(xlist))
return Structure(genotypes)
def get_log_prob(self, arch):
with torch.no_grad():
logits = nn.functional.log_softmax(self.arch_parameters, dim=-1)
select_logits = []
for i, node_info in enumerate(arch.nodes):
for op, xin in node_info:
node_str = "{:}<-{:}".format(i + 1, xin)
op_index = self._op_names.index(op)
select_logits.append(logits[self.edge2index[node_str], op_index])
return sum(select_logits).item()
def return_topK(self, K, use_random=False):
archs = Structure.gen_all(self._op_names, self._max_nodes, False)
pairs = [(self.get_log_prob(arch), arch) for arch in archs]
if K < 0 or K >= len(archs):
K = len(archs)
if use_random:
return random.sample(archs, K)
else:
sorted_pairs = sorted(pairs, key=lambda x: -x[0])
return_pairs = [sorted_pairs[_][1] for _ in range(K)]
return return_pairs
def normalize_archp(self):
if self.mode == "gdas":
while True:
gumbels = -torch.empty_like(self.arch_parameters).exponential_().log()
logits = (self.arch_parameters.log_softmax(dim=1) + gumbels) / self.tau
probs = nn.functional.softmax(logits, dim=1)
index = probs.max(-1, keepdim=True)[1]
one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0)
hardwts = one_h - probs.detach() + probs
if (
(torch.isinf(gumbels).any())
or (torch.isinf(probs).any())
or (torch.isnan(probs).any())
):
continue
else:
break
with torch.no_grad():
hardwts_cpu = hardwts.detach().cpu()
return hardwts, hardwts_cpu, index, "GUMBEL"
else:
alphas = nn.functional.softmax(self.arch_parameters, dim=-1)
index = alphas.max(-1, keepdim=True)[1]
with torch.no_grad():
alphas_cpu = alphas.detach().cpu()
return alphas, alphas_cpu, index, "SOFTMAX"
def forward(self, inputs):
alphas, alphas_cpu, index, verbose_str = self.normalize_archp()
feature = self._stem(inputs)
for i, cell in enumerate(self._cells):
if isinstance(cell, SearchCell):
if self.mode == "urs":
feature = cell.forward_urs(feature)
if self.verbose:
verbose_str += "-forward_urs"
elif self.mode == "select":
feature = cell.forward_select(feature, alphas_cpu)
if self.verbose:
verbose_str += "-forward_select"
elif self.mode == "joint":
feature = cell.forward_joint(feature, alphas)
if self.verbose:
verbose_str += "-forward_joint"
elif self.mode == "dynamic":
feature = cell.forward_dynamic(feature, self.dynamic_cell)
if self.verbose:
verbose_str += "-forward_dynamic"
elif self.mode == "gdas":
feature = cell.forward_gdas(feature, alphas, index)
if self.verbose:
verbose_str += "-forward_gdas"
else:
raise ValueError("invalid mode={:}".format(self.mode))
else:
feature = cell(feature)
if self.drop_path is not None:
feature = drop_path(feature, self.drop_path)
if self.verbose and random.random() < 0.001:
print(verbose_str)
out = self.lastact(feature)
out = self.global_pooling(out)
out = out.view(out.size(0), -1)
logits = self.classifier(out)
return out, logits

View File

@@ -5,194 +5,270 @@ from copy import deepcopy
def get_combination(space, num):
combs = []
for i in range(num):
if i == 0:
for func in space:
combs.append( [(func, i)] )
else:
new_combs = []
for string in combs:
for func in space:
xstring = string + [(func, i)]
new_combs.append( xstring )
combs = new_combs
return combs
combs = []
for i in range(num):
if i == 0:
for func in space:
combs.append([(func, i)])
else:
new_combs = []
for string in combs:
for func in space:
xstring = string + [(func, i)]
new_combs.append(xstring)
combs = new_combs
return combs
class Structure:
def __init__(self, genotype):
assert isinstance(genotype, list) or isinstance(
genotype, tuple
), "invalid class of genotype : {:}".format(type(genotype))
self.node_num = len(genotype) + 1
self.nodes = []
self.node_N = []
for idx, node_info in enumerate(genotype):
assert isinstance(node_info, list) or isinstance(
node_info, tuple
), "invalid class of node_info : {:}".format(type(node_info))
assert len(node_info) >= 1, "invalid length : {:}".format(len(node_info))
for node_in in node_info:
assert isinstance(node_in, list) or isinstance(
node_in, tuple
), "invalid class of in-node : {:}".format(type(node_in))
assert (
len(node_in) == 2 and node_in[1] <= idx
), "invalid in-node : {:}".format(node_in)
self.node_N.append(len(node_info))
self.nodes.append(tuple(deepcopy(node_info)))
def __init__(self, genotype):
assert isinstance(genotype, list) or isinstance(genotype, tuple), 'invalid class of genotype : {:}'.format(type(genotype))
self.node_num = len(genotype) + 1
self.nodes = []
self.node_N = []
for idx, node_info in enumerate(genotype):
assert isinstance(node_info, list) or isinstance(node_info, tuple), 'invalid class of node_info : {:}'.format(type(node_info))
assert len(node_info) >= 1, 'invalid length : {:}'.format(len(node_info))
for node_in in node_info:
assert isinstance(node_in, list) or isinstance(node_in, tuple), 'invalid class of in-node : {:}'.format(type(node_in))
assert len(node_in) == 2 and node_in[1] <= idx, 'invalid in-node : {:}'.format(node_in)
self.node_N.append( len(node_info) )
self.nodes.append( tuple(deepcopy(node_info)) )
def tolist(self, remove_str):
# convert this class to the list, if remove_str is 'none', then remove the 'none' operation.
# note that we re-order the input node in this function
# return the-genotype-list and success [if unsuccess, it is not a connectivity]
genotypes = []
for node_info in self.nodes:
node_info = list(node_info)
node_info = sorted(node_info, key=lambda x: (x[1], x[0]))
node_info = tuple(filter(lambda x: x[0] != remove_str, node_info))
if len(node_info) == 0:
return None, False
genotypes.append(node_info)
return genotypes, True
def tolist(self, remove_str):
# convert this class to the list, if remove_str is 'none', then remove the 'none' operation.
# note that we re-order the input node in this function
# return the-genotype-list and success [if unsuccess, it is not a connectivity]
genotypes = []
for node_info in self.nodes:
node_info = list( node_info )
node_info = sorted(node_info, key=lambda x: (x[1], x[0]))
node_info = tuple(filter(lambda x: x[0] != remove_str, node_info))
if len(node_info) == 0: return None, False
genotypes.append( node_info )
return genotypes, True
def node(self, index):
assert index > 0 and index <= len(self), "invalid index={:} < {:}".format(
index, len(self)
)
return self.nodes[index]
def node(self, index):
assert index > 0 and index <= len(self), 'invalid index={:} < {:}'.format(index, len(self))
return self.nodes[index]
def tostr(self):
strings = []
for node_info in self.nodes:
string = "|".join([x[0] + "~{:}".format(x[1]) for x in node_info])
string = "|{:}|".format(string)
strings.append(string)
return "+".join(strings)
def tostr(self):
strings = []
for node_info in self.nodes:
string = '|'.join([x[0]+'~{:}'.format(x[1]) for x in node_info])
string = '|{:}|'.format(string)
strings.append( string )
return '+'.join(strings)
def check_valid(self):
nodes = {0: True}
for i, node_info in enumerate(self.nodes):
sums = []
for op, xin in node_info:
if op == "none" or nodes[xin] is False:
x = False
else:
x = True
sums.append(x)
nodes[i + 1] = sum(sums) > 0
return nodes[len(self.nodes)]
def check_valid(self):
nodes = {0: True}
for i, node_info in enumerate(self.nodes):
sums = []
for op, xin in node_info:
if op == 'none' or nodes[xin] is False: x = False
else: x = True
sums.append( x )
nodes[i+1] = sum(sums) > 0
return nodes[len(self.nodes)]
def to_unique_str(self, consider_zero=False):
# this is used to identify the isomorphic cell, which rerquires the prior knowledge of operation
# two operations are special, i.e., none and skip_connect
nodes = {0: "0"}
for i_node, node_info in enumerate(self.nodes):
cur_node = []
for op, xin in node_info:
if consider_zero is None:
x = "(" + nodes[xin] + ")" + "@{:}".format(op)
elif consider_zero:
if op == "none" or nodes[xin] == "#":
x = "#" # zero
elif op == "skip_connect":
x = nodes[xin]
else:
x = "(" + nodes[xin] + ")" + "@{:}".format(op)
else:
if op == "skip_connect":
x = nodes[xin]
else:
x = "(" + nodes[xin] + ")" + "@{:}".format(op)
cur_node.append(x)
nodes[i_node + 1] = "+".join(sorted(cur_node))
return nodes[len(self.nodes)]
def to_unique_str(self, consider_zero=False):
# this is used to identify the isomorphic cell, which rerquires the prior knowledge of operation
# two operations are special, i.e., none and skip_connect
nodes = {0: '0'}
for i_node, node_info in enumerate(self.nodes):
cur_node = []
for op, xin in node_info:
if consider_zero is None:
x = '('+nodes[xin]+')' + '@{:}'.format(op)
elif consider_zero:
if op == 'none' or nodes[xin] == '#': x = '#' # zero
elif op == 'skip_connect': x = nodes[xin]
else: x = '('+nodes[xin]+')' + '@{:}'.format(op)
def check_valid_op(self, op_names):
for node_info in self.nodes:
for inode_edge in node_info:
# assert inode_edge[0] in op_names, 'invalid op-name : {:}'.format(inode_edge[0])
if inode_edge[0] not in op_names:
return False
return True
def __repr__(self):
return "{name}({node_num} nodes with {node_info})".format(
name=self.__class__.__name__, node_info=self.tostr(), **self.__dict__
)
def __len__(self):
return len(self.nodes) + 1
def __getitem__(self, index):
return self.nodes[index]
@staticmethod
def str2structure(xstr):
if isinstance(xstr, Structure):
return xstr
assert isinstance(xstr, str), "must take string (not {:}) as input".format(
type(xstr)
)
nodestrs = xstr.split("+")
genotypes = []
for i, node_str in enumerate(nodestrs):
inputs = list(filter(lambda x: x != "", node_str.split("|")))
for xinput in inputs:
assert len(xinput.split("~")) == 2, "invalid input length : {:}".format(
xinput
)
inputs = (xi.split("~") for xi in inputs)
input_infos = tuple((op, int(IDX)) for (op, IDX) in inputs)
genotypes.append(input_infos)
return Structure(genotypes)
@staticmethod
def str2fullstructure(xstr, default_name="none"):
assert isinstance(xstr, str), "must take string (not {:}) as input".format(
type(xstr)
)
nodestrs = xstr.split("+")
genotypes = []
for i, node_str in enumerate(nodestrs):
inputs = list(filter(lambda x: x != "", node_str.split("|")))
for xinput in inputs:
assert len(xinput.split("~")) == 2, "invalid input length : {:}".format(
xinput
)
inputs = (xi.split("~") for xi in inputs)
input_infos = list((op, int(IDX)) for (op, IDX) in inputs)
all_in_nodes = list(x[1] for x in input_infos)
for j in range(i):
if j not in all_in_nodes:
input_infos.append((default_name, j))
node_info = sorted(input_infos, key=lambda x: (x[1], x[0]))
genotypes.append(tuple(node_info))
return Structure(genotypes)
@staticmethod
def gen_all(search_space, num, return_ori):
assert isinstance(search_space, list) or isinstance(
search_space, tuple
), "invalid class of search-space : {:}".format(type(search_space))
assert (
num >= 2
), "There should be at least two nodes in a neural cell instead of {:}".format(
num
)
all_archs = get_combination(search_space, 1)
for i, arch in enumerate(all_archs):
all_archs[i] = [tuple(arch)]
for inode in range(2, num):
cur_nodes = get_combination(search_space, inode)
new_all_archs = []
for previous_arch in all_archs:
for cur_node in cur_nodes:
new_all_archs.append(previous_arch + [tuple(cur_node)])
all_archs = new_all_archs
if return_ori:
return all_archs
else:
if op == 'skip_connect': x = nodes[xin]
else: x = '('+nodes[xin]+')' + '@{:}'.format(op)
cur_node.append(x)
nodes[i_node+1] = '+'.join( sorted(cur_node) )
return nodes[ len(self.nodes) ]
def check_valid_op(self, op_names):
for node_info in self.nodes:
for inode_edge in node_info:
#assert inode_edge[0] in op_names, 'invalid op-name : {:}'.format(inode_edge[0])
if inode_edge[0] not in op_names: return False
return True
def __repr__(self):
return ('{name}({node_num} nodes with {node_info})'.format(name=self.__class__.__name__, node_info=self.tostr(), **self.__dict__))
def __len__(self):
return len(self.nodes) + 1
def __getitem__(self, index):
return self.nodes[index]
@staticmethod
def str2structure(xstr):
if isinstance(xstr, Structure): return xstr
assert isinstance(xstr, str), 'must take string (not {:}) as input'.format(type(xstr))
nodestrs = xstr.split('+')
genotypes = []
for i, node_str in enumerate(nodestrs):
inputs = list(filter(lambda x: x != '', node_str.split('|')))
for xinput in inputs: assert len(xinput.split('~')) == 2, 'invalid input length : {:}'.format(xinput)
inputs = ( xi.split('~') for xi in inputs )
input_infos = tuple( (op, int(IDX)) for (op, IDX) in inputs)
genotypes.append( input_infos )
return Structure( genotypes )
@staticmethod
def str2fullstructure(xstr, default_name='none'):
assert isinstance(xstr, str), 'must take string (not {:}) as input'.format(type(xstr))
nodestrs = xstr.split('+')
genotypes = []
for i, node_str in enumerate(nodestrs):
inputs = list(filter(lambda x: x != '', node_str.split('|')))
for xinput in inputs: assert len(xinput.split('~')) == 2, 'invalid input length : {:}'.format(xinput)
inputs = ( xi.split('~') for xi in inputs )
input_infos = list( (op, int(IDX)) for (op, IDX) in inputs)
all_in_nodes= list(x[1] for x in input_infos)
for j in range(i):
if j not in all_in_nodes: input_infos.append((default_name, j))
node_info = sorted(input_infos, key=lambda x: (x[1], x[0]))
genotypes.append( tuple(node_info) )
return Structure( genotypes )
@staticmethod
def gen_all(search_space, num, return_ori):
assert isinstance(search_space, list) or isinstance(search_space, tuple), 'invalid class of search-space : {:}'.format(type(search_space))
assert num >= 2, 'There should be at least two nodes in a neural cell instead of {:}'.format(num)
all_archs = get_combination(search_space, 1)
for i, arch in enumerate(all_archs):
all_archs[i] = [ tuple(arch) ]
for inode in range(2, num):
cur_nodes = get_combination(search_space, inode)
new_all_archs = []
for previous_arch in all_archs:
for cur_node in cur_nodes:
new_all_archs.append( previous_arch + [tuple(cur_node)] )
all_archs = new_all_archs
if return_ori:
return all_archs
else:
return [Structure(x) for x in all_archs]
return [Structure(x) for x in all_archs]
ResNet_CODE = Structure(
[(('nor_conv_3x3', 0), ), # node-1
(('nor_conv_3x3', 1), ), # node-2
(('skip_connect', 0), ('skip_connect', 2))] # node-3
)
[
(("nor_conv_3x3", 0),), # node-1
(("nor_conv_3x3", 1),), # node-2
(("skip_connect", 0), ("skip_connect", 2)),
] # node-3
)
AllConv3x3_CODE = Structure(
[(('nor_conv_3x3', 0), ), # node-1
(('nor_conv_3x3', 0), ('nor_conv_3x3', 1)), # node-2
(('nor_conv_3x3', 0), ('nor_conv_3x3', 1), ('nor_conv_3x3', 2))] # node-3
)
[
(("nor_conv_3x3", 0),), # node-1
(("nor_conv_3x3", 0), ("nor_conv_3x3", 1)), # node-2
(("nor_conv_3x3", 0), ("nor_conv_3x3", 1), ("nor_conv_3x3", 2)),
] # node-3
)
AllFull_CODE = Structure(
[(('skip_connect', 0), ('nor_conv_1x1', 0), ('nor_conv_3x3', 0), ('avg_pool_3x3', 0)), # node-1
(('skip_connect', 0), ('nor_conv_1x1', 0), ('nor_conv_3x3', 0), ('avg_pool_3x3', 0), ('skip_connect', 1), ('nor_conv_1x1', 1), ('nor_conv_3x3', 1), ('avg_pool_3x3', 1)), # node-2
(('skip_connect', 0), ('nor_conv_1x1', 0), ('nor_conv_3x3', 0), ('avg_pool_3x3', 0), ('skip_connect', 1), ('nor_conv_1x1', 1), ('nor_conv_3x3', 1), ('avg_pool_3x3', 1), ('skip_connect', 2), ('nor_conv_1x1', 2), ('nor_conv_3x3', 2), ('avg_pool_3x3', 2))] # node-3
)
[
(
("skip_connect", 0),
("nor_conv_1x1", 0),
("nor_conv_3x3", 0),
("avg_pool_3x3", 0),
), # node-1
(
("skip_connect", 0),
("nor_conv_1x1", 0),
("nor_conv_3x3", 0),
("avg_pool_3x3", 0),
("skip_connect", 1),
("nor_conv_1x1", 1),
("nor_conv_3x3", 1),
("avg_pool_3x3", 1),
), # node-2
(
("skip_connect", 0),
("nor_conv_1x1", 0),
("nor_conv_3x3", 0),
("avg_pool_3x3", 0),
("skip_connect", 1),
("nor_conv_1x1", 1),
("nor_conv_3x3", 1),
("avg_pool_3x3", 1),
("skip_connect", 2),
("nor_conv_1x1", 2),
("nor_conv_3x3", 2),
("avg_pool_3x3", 2),
),
] # node-3
)
AllConv1x1_CODE = Structure(
[(('nor_conv_1x1', 0), ), # node-1
(('nor_conv_1x1', 0), ('nor_conv_1x1', 1)), # node-2
(('nor_conv_1x1', 0), ('nor_conv_1x1', 1), ('nor_conv_1x1', 2))] # node-3
)
[
(("nor_conv_1x1", 0),), # node-1
(("nor_conv_1x1", 0), ("nor_conv_1x1", 1)), # node-2
(("nor_conv_1x1", 0), ("nor_conv_1x1", 1), ("nor_conv_1x1", 2)),
] # node-3
)
AllIdentity_CODE = Structure(
[(('skip_connect', 0), ), # node-1
(('skip_connect', 0), ('skip_connect', 1)), # node-2
(('skip_connect', 0), ('skip_connect', 1), ('skip_connect', 2))] # node-3
)
[
(("skip_connect", 0),), # node-1
(("skip_connect", 0), ("skip_connect", 1)), # node-2
(("skip_connect", 0), ("skip_connect", 1), ("skip_connect", 2)),
] # node-3
)
architectures = {'resnet' : ResNet_CODE,
'all_c3x3': AllConv3x3_CODE,
'all_c1x1': AllConv1x1_CODE,
'all_idnt': AllIdentity_CODE,
'all_full': AllFull_CODE}
architectures = {
"resnet": ResNet_CODE,
"all_c3x3": AllConv3x3_CODE,
"all_c1x1": AllConv1x1_CODE,
"all_idnt": AllIdentity_CODE,
"all_full": AllFull_CODE,
}

View File

@@ -11,191 +11,241 @@ from ..cell_operations import OPS
# This module is used for NAS-Bench-201, represents a small search space with a complete DAG
class NAS201SearchCell(nn.Module):
def __init__(
self,
C_in,
C_out,
stride,
max_nodes,
op_names,
affine=False,
track_running_stats=True,
):
super(NAS201SearchCell, self).__init__()
def __init__(self, C_in, C_out, stride, max_nodes, op_names, affine=False, track_running_stats=True):
super(NAS201SearchCell, self).__init__()
self.op_names = deepcopy(op_names)
self.edges = nn.ModuleDict()
self.max_nodes = max_nodes
self.in_dim = C_in
self.out_dim = C_out
for i in range(1, max_nodes):
for j in range(i):
node_str = "{:}<-{:}".format(i, j)
if j == 0:
xlists = [
OPS[op_name](C_in, C_out, stride, affine, track_running_stats)
for op_name in op_names
]
else:
xlists = [
OPS[op_name](C_in, C_out, 1, affine, track_running_stats)
for op_name in op_names
]
self.edges[node_str] = nn.ModuleList(xlists)
self.edge_keys = sorted(list(self.edges.keys()))
self.edge2index = {key: i for i, key in enumerate(self.edge_keys)}
self.num_edges = len(self.edges)
self.op_names = deepcopy(op_names)
self.edges = nn.ModuleDict()
self.max_nodes = max_nodes
self.in_dim = C_in
self.out_dim = C_out
for i in range(1, max_nodes):
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
if j == 0:
xlists = [OPS[op_name](C_in , C_out, stride, affine, track_running_stats) for op_name in op_names]
else:
xlists = [OPS[op_name](C_in , C_out, 1, affine, track_running_stats) for op_name in op_names]
self.edges[ node_str ] = nn.ModuleList( xlists )
self.edge_keys = sorted(list(self.edges.keys()))
self.edge2index = {key:i for i, key in enumerate(self.edge_keys)}
self.num_edges = len(self.edges)
def extra_repr(self):
string = "info :: {max_nodes} nodes, inC={in_dim}, outC={out_dim}".format(
**self.__dict__
)
return string
def extra_repr(self):
string = 'info :: {max_nodes} nodes, inC={in_dim}, outC={out_dim}'.format(**self.__dict__)
return string
def forward(self, inputs, weightss):
nodes = [inputs]
for i in range(1, self.max_nodes):
inter_nodes = []
for j in range(i):
node_str = "{:}<-{:}".format(i, j)
weights = weightss[self.edge2index[node_str]]
inter_nodes.append(
sum(
layer(nodes[j]) * w
for layer, w in zip(self.edges[node_str], weights)
)
)
nodes.append(sum(inter_nodes))
return nodes[-1]
def forward(self, inputs, weightss):
nodes = [inputs]
for i in range(1, self.max_nodes):
inter_nodes = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
weights = weightss[ self.edge2index[node_str] ]
inter_nodes.append( sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) )
nodes.append( sum(inter_nodes) )
return nodes[-1]
# GDAS
def forward_gdas(self, inputs, hardwts, index):
nodes = [inputs]
for i in range(1, self.max_nodes):
inter_nodes = []
for j in range(i):
node_str = "{:}<-{:}".format(i, j)
weights = hardwts[self.edge2index[node_str]]
argmaxs = index[self.edge2index[node_str]].item()
weigsum = sum(
weights[_ie] * edge(nodes[j]) if _ie == argmaxs else weights[_ie]
for _ie, edge in enumerate(self.edges[node_str])
)
inter_nodes.append(weigsum)
nodes.append(sum(inter_nodes))
return nodes[-1]
# GDAS
def forward_gdas(self, inputs, hardwts, index):
nodes = [inputs]
for i in range(1, self.max_nodes):
inter_nodes = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
weights = hardwts[ self.edge2index[node_str] ]
argmaxs = index[ self.edge2index[node_str] ].item()
weigsum = sum( weights[_ie] * edge(nodes[j]) if _ie == argmaxs else weights[_ie] for _ie, edge in enumerate(self.edges[node_str]) )
inter_nodes.append( weigsum )
nodes.append( sum(inter_nodes) )
return nodes[-1]
# joint
def forward_joint(self, inputs, weightss):
nodes = [inputs]
for i in range(1, self.max_nodes):
inter_nodes = []
for j in range(i):
node_str = "{:}<-{:}".format(i, j)
weights = weightss[self.edge2index[node_str]]
# aggregation = sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) / weights.numel()
aggregation = sum(
layer(nodes[j]) * w
for layer, w in zip(self.edges[node_str], weights)
)
inter_nodes.append(aggregation)
nodes.append(sum(inter_nodes))
return nodes[-1]
# joint
def forward_joint(self, inputs, weightss):
nodes = [inputs]
for i in range(1, self.max_nodes):
inter_nodes = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
weights = weightss[ self.edge2index[node_str] ]
#aggregation = sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) / weights.numel()
aggregation = sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) )
inter_nodes.append( aggregation )
nodes.append( sum(inter_nodes) )
return nodes[-1]
# uniform random sampling per iteration, SETN
def forward_urs(self, inputs):
nodes = [inputs]
for i in range(1, self.max_nodes):
while True: # to avoid select zero for all ops
sops, has_non_zero = [], False
for j in range(i):
node_str = "{:}<-{:}".format(i, j)
candidates = self.edges[node_str]
select_op = random.choice(candidates)
sops.append(select_op)
if not hasattr(select_op, "is_zero") or select_op.is_zero is False:
has_non_zero = True
if has_non_zero:
break
inter_nodes = []
for j, select_op in enumerate(sops):
inter_nodes.append(select_op(nodes[j]))
nodes.append(sum(inter_nodes))
return nodes[-1]
# uniform random sampling per iteration, SETN
def forward_urs(self, inputs):
nodes = [inputs]
for i in range(1, self.max_nodes):
while True: # to avoid select zero for all ops
sops, has_non_zero = [], False
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
candidates = self.edges[node_str]
select_op = random.choice(candidates)
sops.append( select_op )
if not hasattr(select_op, 'is_zero') or select_op.is_zero is False: has_non_zero=True
if has_non_zero: break
inter_nodes = []
for j, select_op in enumerate(sops):
inter_nodes.append( select_op(nodes[j]) )
nodes.append( sum(inter_nodes) )
return nodes[-1]
# select the argmax
def forward_select(self, inputs, weightss):
nodes = [inputs]
for i in range(1, self.max_nodes):
inter_nodes = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
weights = weightss[ self.edge2index[node_str] ]
inter_nodes.append( self.edges[node_str][ weights.argmax().item() ]( nodes[j] ) )
#inter_nodes.append( sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) )
nodes.append( sum(inter_nodes) )
return nodes[-1]
# forward with a specific structure
def forward_dynamic(self, inputs, structure):
nodes = [inputs]
for i in range(1, self.max_nodes):
cur_op_node = structure.nodes[i-1]
inter_nodes = []
for op_name, j in cur_op_node:
node_str = '{:}<-{:}'.format(i, j)
op_index = self.op_names.index( op_name )
inter_nodes.append( self.edges[node_str][op_index]( nodes[j] ) )
nodes.append( sum(inter_nodes) )
return nodes[-1]
# select the argmax
def forward_select(self, inputs, weightss):
nodes = [inputs]
for i in range(1, self.max_nodes):
inter_nodes = []
for j in range(i):
node_str = "{:}<-{:}".format(i, j)
weights = weightss[self.edge2index[node_str]]
inter_nodes.append(
self.edges[node_str][weights.argmax().item()](nodes[j])
)
# inter_nodes.append( sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) )
nodes.append(sum(inter_nodes))
return nodes[-1]
# forward with a specific structure
def forward_dynamic(self, inputs, structure):
nodes = [inputs]
for i in range(1, self.max_nodes):
cur_op_node = structure.nodes[i - 1]
inter_nodes = []
for op_name, j in cur_op_node:
node_str = "{:}<-{:}".format(i, j)
op_index = self.op_names.index(op_name)
inter_nodes.append(self.edges[node_str][op_index](nodes[j]))
nodes.append(sum(inter_nodes))
return nodes[-1]
class MixedOp(nn.Module):
def __init__(self, space, C, stride, affine, track_running_stats):
super(MixedOp, self).__init__()
self._ops = nn.ModuleList()
for primitive in space:
op = OPS[primitive](C, C, stride, affine, track_running_stats)
self._ops.append(op)
def __init__(self, space, C, stride, affine, track_running_stats):
super(MixedOp, self).__init__()
self._ops = nn.ModuleList()
for primitive in space:
op = OPS[primitive](C, C, stride, affine, track_running_stats)
self._ops.append(op)
def forward_gdas(self, x, weights, index):
return self._ops[index](x) * weights[index]
def forward_gdas(self, x, weights, index):
return self._ops[index](x) * weights[index]
def forward_darts(self, x, weights):
return sum(w * op(x) for w, op in zip(weights, self._ops))
def forward_darts(self, x, weights):
return sum(w * op(x) for w, op in zip(weights, self._ops))
# Learning Transferable Architectures for Scalable Image Recognition, CVPR 2018
class NASNetSearchCell(nn.Module):
def __init__(
self,
space,
steps,
multiplier,
C_prev_prev,
C_prev,
C,
reduction,
reduction_prev,
affine,
track_running_stats,
):
super(NASNetSearchCell, self).__init__()
self.reduction = reduction
self.op_names = deepcopy(space)
if reduction_prev:
self.preprocess0 = OPS["skip_connect"](
C_prev_prev, C, 2, affine, track_running_stats
)
else:
self.preprocess0 = OPS["nor_conv_1x1"](
C_prev_prev, C, 1, affine, track_running_stats
)
self.preprocess1 = OPS["nor_conv_1x1"](
C_prev, C, 1, affine, track_running_stats
)
self._steps = steps
self._multiplier = multiplier
def __init__(self, space, steps, multiplier, C_prev_prev, C_prev, C, reduction, reduction_prev, affine, track_running_stats):
super(NASNetSearchCell, self).__init__()
self.reduction = reduction
self.op_names = deepcopy(space)
if reduction_prev: self.preprocess0 = OPS['skip_connect'](C_prev_prev, C, 2, affine, track_running_stats)
else : self.preprocess0 = OPS['nor_conv_1x1'](C_prev_prev, C, 1, affine, track_running_stats)
self.preprocess1 = OPS['nor_conv_1x1'](C_prev, C, 1, affine, track_running_stats)
self._steps = steps
self._multiplier = multiplier
self._ops = nn.ModuleList()
self.edges = nn.ModuleDict()
for i in range(self._steps):
for j in range(2 + i):
node_str = "{:}<-{:}".format(
i, j
) # indicate the edge from node-(j) to node-(i+2)
stride = 2 if reduction and j < 2 else 1
op = MixedOp(space, C, stride, affine, track_running_stats)
self.edges[node_str] = op
self.edge_keys = sorted(list(self.edges.keys()))
self.edge2index = {key: i for i, key in enumerate(self.edge_keys)}
self.num_edges = len(self.edges)
self._ops = nn.ModuleList()
self.edges = nn.ModuleDict()
for i in range(self._steps):
for j in range(2+i):
node_str = '{:}<-{:}'.format(i, j) # indicate the edge from node-(j) to node-(i+2)
stride = 2 if reduction and j < 2 else 1
op = MixedOp(space, C, stride, affine, track_running_stats)
self.edges[ node_str ] = op
self.edge_keys = sorted(list(self.edges.keys()))
self.edge2index = {key:i for i, key in enumerate(self.edge_keys)}
self.num_edges = len(self.edges)
@property
def multiplier(self):
return self._multiplier
@property
def multiplier(self):
return self._multiplier
def forward_gdas(self, s0, s1, weightss, indexs):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
def forward_gdas(self, s0, s1, weightss, indexs):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
states = [s0, s1]
for i in range(self._steps):
clist = []
for j, h in enumerate(states):
node_str = "{:}<-{:}".format(i, j)
op = self.edges[node_str]
weights = weightss[self.edge2index[node_str]]
index = indexs[self.edge2index[node_str]].item()
clist.append(op.forward_gdas(h, weights, index))
states.append(sum(clist))
states = [s0, s1]
for i in range(self._steps):
clist = []
for j, h in enumerate(states):
node_str = '{:}<-{:}'.format(i, j)
op = self.edges[ node_str ]
weights = weightss[ self.edge2index[node_str] ]
index = indexs[ self.edge2index[node_str] ].item()
clist.append( op.forward_gdas(h, weights, index) )
states.append( sum(clist) )
return torch.cat(states[-self._multiplier :], dim=1)
return torch.cat(states[-self._multiplier:], dim=1)
def forward_darts(self, s0, s1, weightss):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
def forward_darts(self, s0, s1, weightss):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
states = [s0, s1]
for i in range(self._steps):
clist = []
for j, h in enumerate(states):
node_str = "{:}<-{:}".format(i, j)
op = self.edges[node_str]
weights = weightss[self.edge2index[node_str]]
clist.append(op.forward_darts(h, weights))
states.append(sum(clist))
states = [s0, s1]
for i in range(self._steps):
clist = []
for j, h in enumerate(states):
node_str = '{:}<-{:}'.format(i, j)
op = self.edges[ node_str ]
weights = weightss[ self.edge2index[node_str] ]
clist.append( op.forward_darts(h, weights) )
states.append( sum(clist) )
return torch.cat(states[-self._multiplier:], dim=1)
return torch.cat(states[-self._multiplier :], dim=1)

View File

@@ -7,91 +7,116 @@ import torch
import torch.nn as nn
from copy import deepcopy
from ..cell_operations import ResNetBasicblock
from .search_cells import NAS201SearchCell as SearchCell
from .genotypes import Structure
from .search_cells import NAS201SearchCell as SearchCell
from .genotypes import Structure
class TinyNetworkDarts(nn.Module):
def __init__(
self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats
):
super(TinyNetworkDarts, self).__init__()
self._C = C
self._layerN = N
self.max_nodes = max_nodes
self.stem = nn.Sequential(
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C)
)
def __init__(self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats):
super(TinyNetworkDarts, self).__init__()
self._C = C
self._layerN = N
self.max_nodes = max_nodes
self.stem = nn.Sequential(
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(C))
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
C_prev, num_edge, edge2index = C, None, None
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
if reduction:
cell = ResNetBasicblock(C_prev, C_curr, 2)
else:
cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine, track_running_stats)
if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
self.cells.append( cell )
C_prev = cell.out_dim
self.op_names = deepcopy( search_space )
self._Layer = len(self.cells)
self.edge2index = edge2index
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
C_prev, num_edge, edge2index = C, None, None
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(
zip(layer_channels, layer_reductions)
):
if reduction:
cell = ResNetBasicblock(C_prev, C_curr, 2)
else:
cell = SearchCell(
C_prev,
C_curr,
1,
max_nodes,
search_space,
affine,
track_running_stats,
)
if num_edge is None:
num_edge, edge2index = cell.num_edges, cell.edge2index
else:
assert (
num_edge == cell.num_edges and edge2index == cell.edge2index
), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges)
self.cells.append(cell)
C_prev = cell.out_dim
self.op_names = deepcopy(search_space)
self._Layer = len(self.cells)
self.edge2index = edge2index
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.arch_parameters = nn.Parameter(
1e-3 * torch.randn(num_edge, len(search_space))
)
def get_weights(self):
xlist = list( self.stem.parameters() ) + list( self.cells.parameters() )
xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() )
xlist+= list( self.classifier.parameters() )
return xlist
def get_weights(self):
xlist = list(self.stem.parameters()) + list(self.cells.parameters())
xlist += list(self.lastact.parameters()) + list(
self.global_pooling.parameters()
)
xlist += list(self.classifier.parameters())
return xlist
def get_alphas(self):
return [self.arch_parameters]
def get_alphas(self):
return [self.arch_parameters]
def show_alphas(self):
with torch.no_grad():
return 'arch-parameters :\n{:}'.format( nn.functional.softmax(self.arch_parameters, dim=-1).cpu() )
def get_message(self):
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
return string
def extra_repr(self):
return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
def genotype(self):
genotypes = []
for i in range(1, self.max_nodes):
xlist = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
def show_alphas(self):
with torch.no_grad():
weights = self.arch_parameters[ self.edge2index[node_str] ]
op_name = self.op_names[ weights.argmax().item() ]
xlist.append((op_name, j))
genotypes.append( tuple(xlist) )
return Structure( genotypes )
return "arch-parameters :\n{:}".format(
nn.functional.softmax(self.arch_parameters, dim=-1).cpu()
)
def forward(self, inputs):
alphas = nn.functional.softmax(self.arch_parameters, dim=-1)
def get_message(self):
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += "\n {:02d}/{:02d} :: {:}".format(
i, len(self.cells), cell.extra_repr()
)
return string
feature = self.stem(inputs)
for i, cell in enumerate(self.cells):
if isinstance(cell, SearchCell):
feature = cell(feature, alphas)
else:
feature = cell(feature)
def extra_repr(self):
return "{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})".format(
name=self.__class__.__name__, **self.__dict__
)
out = self.lastact(feature)
out = self.global_pooling( out )
out = out.view(out.size(0), -1)
logits = self.classifier(out)
def genotype(self):
genotypes = []
for i in range(1, self.max_nodes):
xlist = []
for j in range(i):
node_str = "{:}<-{:}".format(i, j)
with torch.no_grad():
weights = self.arch_parameters[self.edge2index[node_str]]
op_name = self.op_names[weights.argmax().item()]
xlist.append((op_name, j))
genotypes.append(tuple(xlist))
return Structure(genotypes)
return out, logits
def forward(self, inputs):
alphas = nn.functional.softmax(self.arch_parameters, dim=-1)
feature = self.stem(inputs)
for i, cell in enumerate(self.cells):
if isinstance(cell, SearchCell):
feature = cell(feature, alphas)
else:
feature = cell(feature)
out = self.lastact(feature)
out = self.global_pooling(out)
out = out.view(out.size(0), -1)
logits = self.classifier(out)
return out, logits

View File

@@ -10,103 +10,169 @@ from .search_cells import NASNetSearchCell as SearchCell
# The macro structure is based on NASNet
class NASNetworkDARTS(nn.Module):
def __init__(
self,
C: int,
N: int,
steps: int,
multiplier: int,
stem_multiplier: int,
num_classes: int,
search_space: List[Text],
affine: bool,
track_running_stats: bool,
):
super(NASNetworkDARTS, self).__init__()
self._C = C
self._layerN = N
self._steps = steps
self._multiplier = multiplier
self.stem = nn.Sequential(
nn.Conv2d(3, C * stem_multiplier, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(C * stem_multiplier),
)
def __init__(self, C: int, N: int, steps: int, multiplier: int, stem_multiplier: int,
num_classes: int, search_space: List[Text], affine: bool, track_running_stats: bool):
super(NASNetworkDARTS, self).__init__()
self._C = C
self._layerN = N
self._steps = steps
self._multiplier = multiplier
self.stem = nn.Sequential(
nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(C*stem_multiplier))
# config for each layer
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * (N-1) + [C*4 ] + [C*4 ] * (N-1)
layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1)
# config for each layer
layer_channels = (
[C] * N + [C * 2] + [C * 2] * (N - 1) + [C * 4] + [C * 4] * (N - 1)
)
layer_reductions = (
[False] * N + [True] + [False] * (N - 1) + [True] + [False] * (N - 1)
)
num_edge, edge2index = None, None
C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False
num_edge, edge2index = None, None
C_prev_prev, C_prev, C_curr, reduction_prev = (
C * stem_multiplier,
C * stem_multiplier,
C,
False,
)
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
cell = SearchCell(search_space, steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats)
if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
self.cells.append( cell )
C_prev_prev, C_prev, reduction_prev = C_prev, multiplier*C_curr, reduction
self.op_names = deepcopy( search_space )
self._Layer = len(self.cells)
self.edge2index = edge2index
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.arch_normal_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
self.arch_reduce_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(
zip(layer_channels, layer_reductions)
):
cell = SearchCell(
search_space,
steps,
multiplier,
C_prev_prev,
C_prev,
C_curr,
reduction,
reduction_prev,
affine,
track_running_stats,
)
if num_edge is None:
num_edge, edge2index = cell.num_edges, cell.edge2index
else:
assert (
num_edge == cell.num_edges and edge2index == cell.edge2index
), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges)
self.cells.append(cell)
C_prev_prev, C_prev, reduction_prev = C_prev, multiplier * C_curr, reduction
self.op_names = deepcopy(search_space)
self._Layer = len(self.cells)
self.edge2index = edge2index
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.arch_normal_parameters = nn.Parameter(
1e-3 * torch.randn(num_edge, len(search_space))
)
self.arch_reduce_parameters = nn.Parameter(
1e-3 * torch.randn(num_edge, len(search_space))
)
def get_weights(self) -> List[torch.nn.Parameter]:
xlist = list( self.stem.parameters() ) + list( self.cells.parameters() )
xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() )
xlist+= list( self.classifier.parameters() )
return xlist
def get_weights(self) -> List[torch.nn.Parameter]:
xlist = list(self.stem.parameters()) + list(self.cells.parameters())
xlist += list(self.lastact.parameters()) + list(
self.global_pooling.parameters()
)
xlist += list(self.classifier.parameters())
return xlist
def get_alphas(self) -> List[torch.nn.Parameter]:
return [self.arch_normal_parameters, self.arch_reduce_parameters]
def get_alphas(self) -> List[torch.nn.Parameter]:
return [self.arch_normal_parameters, self.arch_reduce_parameters]
def show_alphas(self) -> Text:
with torch.no_grad():
A = 'arch-normal-parameters :\n{:}'.format( nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu() )
B = 'arch-reduce-parameters :\n{:}'.format( nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu() )
return '{:}\n{:}'.format(A, B)
def show_alphas(self) -> Text:
with torch.no_grad():
A = "arch-normal-parameters :\n{:}".format(
nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu()
)
B = "arch-reduce-parameters :\n{:}".format(
nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu()
)
return "{:}\n{:}".format(A, B)
def get_message(self) -> Text:
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
return string
def get_message(self) -> Text:
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += "\n {:02d}/{:02d} :: {:}".format(
i, len(self.cells), cell.extra_repr()
)
return string
def extra_repr(self) -> Text:
return ('{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
def extra_repr(self) -> Text:
return "{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})".format(
name=self.__class__.__name__, **self.__dict__
)
def genotype(self) -> Dict[Text, List]:
def _parse(weights):
gene = []
for i in range(self._steps):
edges = []
for j in range(2+i):
node_str = '{:}<-{:}'.format(i, j)
ws = weights[ self.edge2index[node_str] ]
for k, op_name in enumerate(self.op_names):
if op_name == 'none': continue
edges.append( (op_name, j, ws[k]) )
# (TODO) xuanyidong:
# Here the selected two edges might come from the same input node.
# And this case could be a problem that two edges will collapse into a single one
# due to our assumption -- at most one edge from an input node during evaluation.
edges = sorted(edges, key=lambda x: -x[-1])
selected_edges = edges[:2]
gene.append( tuple(selected_edges) )
return gene
with torch.no_grad():
gene_normal = _parse(torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy())
gene_reduce = _parse(torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy())
return {'normal': gene_normal, 'normal_concat': list(range(2+self._steps-self._multiplier, self._steps+2)),
'reduce': gene_reduce, 'reduce_concat': list(range(2+self._steps-self._multiplier, self._steps+2))}
def genotype(self) -> Dict[Text, List]:
def _parse(weights):
gene = []
for i in range(self._steps):
edges = []
for j in range(2 + i):
node_str = "{:}<-{:}".format(i, j)
ws = weights[self.edge2index[node_str]]
for k, op_name in enumerate(self.op_names):
if op_name == "none":
continue
edges.append((op_name, j, ws[k]))
# (TODO) xuanyidong:
# Here the selected two edges might come from the same input node.
# And this case could be a problem that two edges will collapse into a single one
# due to our assumption -- at most one edge from an input node during evaluation.
edges = sorted(edges, key=lambda x: -x[-1])
selected_edges = edges[:2]
gene.append(tuple(selected_edges))
return gene
def forward(self, inputs):
with torch.no_grad():
gene_normal = _parse(
torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy()
)
gene_reduce = _parse(
torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy()
)
return {
"normal": gene_normal,
"normal_concat": list(
range(2 + self._steps - self._multiplier, self._steps + 2)
),
"reduce": gene_reduce,
"reduce_concat": list(
range(2 + self._steps - self._multiplier, self._steps + 2)
),
}
normal_w = nn.functional.softmax(self.arch_normal_parameters, dim=1)
reduce_w = nn.functional.softmax(self.arch_reduce_parameters, dim=1)
def forward(self, inputs):
s0 = s1 = self.stem(inputs)
for i, cell in enumerate(self.cells):
if cell.reduction: ww = reduce_w
else : ww = normal_w
s0, s1 = s1, cell.forward_darts(s0, s1, ww)
out = self.lastact(s1)
out = self.global_pooling( out )
out = out.view(out.size(0), -1)
logits = self.classifier(out)
normal_w = nn.functional.softmax(self.arch_normal_parameters, dim=1)
reduce_w = nn.functional.softmax(self.arch_reduce_parameters, dim=1)
return out, logits
s0 = s1 = self.stem(inputs)
for i, cell in enumerate(self.cells):
if cell.reduction:
ww = reduce_w
else:
ww = normal_w
s0, s1 = s1, cell.forward_darts(s0, s1, ww)
out = self.lastact(s1)
out = self.global_pooling(out)
out = out.view(out.size(0), -1)
logits = self.classifier(out)
return out, logits

View File

@@ -7,88 +7,108 @@ import torch
import torch.nn as nn
from copy import deepcopy
from ..cell_operations import ResNetBasicblock
from .search_cells import NAS201SearchCell as SearchCell
from .genotypes import Structure
from .search_cells import NAS201SearchCell as SearchCell
from .genotypes import Structure
from .search_model_enas_utils import Controller
class TinyNetworkENAS(nn.Module):
def __init__(
self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats
):
super(TinyNetworkENAS, self).__init__()
self._C = C
self._layerN = N
self.max_nodes = max_nodes
self.stem = nn.Sequential(
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C)
)
def __init__(self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats):
super(TinyNetworkENAS, self).__init__()
self._C = C
self._layerN = N
self.max_nodes = max_nodes
self.stem = nn.Sequential(
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(C))
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
C_prev, num_edge, edge2index = C, None, None
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
if reduction:
cell = ResNetBasicblock(C_prev, C_curr, 2)
else:
cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine, track_running_stats)
if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
self.cells.append( cell )
C_prev = cell.out_dim
self.op_names = deepcopy( search_space )
self._Layer = len(self.cells)
self.edge2index = edge2index
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
# to maintain the sampled architecture
self.sampled_arch = None
C_prev, num_edge, edge2index = C, None, None
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(
zip(layer_channels, layer_reductions)
):
if reduction:
cell = ResNetBasicblock(C_prev, C_curr, 2)
else:
cell = SearchCell(
C_prev,
C_curr,
1,
max_nodes,
search_space,
affine,
track_running_stats,
)
if num_edge is None:
num_edge, edge2index = cell.num_edges, cell.edge2index
else:
assert (
num_edge == cell.num_edges and edge2index == cell.edge2index
), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges)
self.cells.append(cell)
C_prev = cell.out_dim
self.op_names = deepcopy(search_space)
self._Layer = len(self.cells)
self.edge2index = edge2index
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
# to maintain the sampled architecture
self.sampled_arch = None
def update_arch(self, _arch):
if _arch is None:
self.sampled_arch = None
elif isinstance(_arch, Structure):
self.sampled_arch = _arch
elif isinstance(_arch, (list, tuple)):
genotypes = []
for i in range(1, self.max_nodes):
xlist = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
op_index = _arch[ self.edge2index[node_str] ]
op_name = self.op_names[ op_index ]
xlist.append((op_name, j))
genotypes.append( tuple(xlist) )
self.sampled_arch = Structure(genotypes)
else:
raise ValueError('invalid type of input architecture : {:}'.format(_arch))
return self.sampled_arch
def create_controller(self):
return Controller(len(self.edge2index), len(self.op_names))
def update_arch(self, _arch):
if _arch is None:
self.sampled_arch = None
elif isinstance(_arch, Structure):
self.sampled_arch = _arch
elif isinstance(_arch, (list, tuple)):
genotypes = []
for i in range(1, self.max_nodes):
xlist = []
for j in range(i):
node_str = "{:}<-{:}".format(i, j)
op_index = _arch[self.edge2index[node_str]]
op_name = self.op_names[op_index]
xlist.append((op_name, j))
genotypes.append(tuple(xlist))
self.sampled_arch = Structure(genotypes)
else:
raise ValueError("invalid type of input architecture : {:}".format(_arch))
return self.sampled_arch
def get_message(self):
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
return string
def create_controller(self):
return Controller(len(self.edge2index), len(self.op_names))
def extra_repr(self):
return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
def get_message(self):
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += "\n {:02d}/{:02d} :: {:}".format(
i, len(self.cells), cell.extra_repr()
)
return string
def forward(self, inputs):
def extra_repr(self):
return "{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})".format(
name=self.__class__.__name__, **self.__dict__
)
feature = self.stem(inputs)
for i, cell in enumerate(self.cells):
if isinstance(cell, SearchCell):
feature = cell.forward_dynamic(feature, self.sampled_arch)
else: feature = cell(feature)
def forward(self, inputs):
out = self.lastact(feature)
out = self.global_pooling( out )
out = out.view(out.size(0), -1)
logits = self.classifier(out)
feature = self.stem(inputs)
for i, cell in enumerate(self.cells):
if isinstance(cell, SearchCell):
feature = cell.forward_dynamic(feature, self.sampled_arch)
else:
feature = cell(feature)
return out, logits
out = self.lastact(feature)
out = self.global_pooling(out)
out = out.view(out.size(0), -1)
logits = self.classifier(out)
return out, logits

View File

@@ -7,49 +7,68 @@ import torch
import torch.nn as nn
from torch.distributions.categorical import Categorical
class Controller(nn.Module):
# we refer to https://github.com/TDeVries/enas_pytorch/blob/master/models/controller.py
def __init__(self, num_edge, num_ops, lstm_size=32, lstm_num_layers=2, tanh_constant=2.5, temperature=5.0):
super(Controller, self).__init__()
# assign the attributes
self.num_edge = num_edge
self.num_ops = num_ops
self.lstm_size = lstm_size
self.lstm_N = lstm_num_layers
self.tanh_constant = tanh_constant
self.temperature = temperature
# create parameters
self.register_parameter('input_vars', nn.Parameter(torch.Tensor(1, 1, lstm_size)))
self.w_lstm = nn.LSTM(input_size=self.lstm_size, hidden_size=self.lstm_size, num_layers=self.lstm_N)
self.w_embd = nn.Embedding(self.num_ops, self.lstm_size)
self.w_pred = nn.Linear(self.lstm_size, self.num_ops)
# we refer to https://github.com/TDeVries/enas_pytorch/blob/master/models/controller.py
def __init__(
self,
num_edge,
num_ops,
lstm_size=32,
lstm_num_layers=2,
tanh_constant=2.5,
temperature=5.0,
):
super(Controller, self).__init__()
# assign the attributes
self.num_edge = num_edge
self.num_ops = num_ops
self.lstm_size = lstm_size
self.lstm_N = lstm_num_layers
self.tanh_constant = tanh_constant
self.temperature = temperature
# create parameters
self.register_parameter(
"input_vars", nn.Parameter(torch.Tensor(1, 1, lstm_size))
)
self.w_lstm = nn.LSTM(
input_size=self.lstm_size,
hidden_size=self.lstm_size,
num_layers=self.lstm_N,
)
self.w_embd = nn.Embedding(self.num_ops, self.lstm_size)
self.w_pred = nn.Linear(self.lstm_size, self.num_ops)
nn.init.uniform_(self.input_vars , -0.1, 0.1)
nn.init.uniform_(self.w_lstm.weight_hh_l0, -0.1, 0.1)
nn.init.uniform_(self.w_lstm.weight_ih_l0, -0.1, 0.1)
nn.init.uniform_(self.w_embd.weight , -0.1, 0.1)
nn.init.uniform_(self.w_pred.weight , -0.1, 0.1)
nn.init.uniform_(self.input_vars, -0.1, 0.1)
nn.init.uniform_(self.w_lstm.weight_hh_l0, -0.1, 0.1)
nn.init.uniform_(self.w_lstm.weight_ih_l0, -0.1, 0.1)
nn.init.uniform_(self.w_embd.weight, -0.1, 0.1)
nn.init.uniform_(self.w_pred.weight, -0.1, 0.1)
def forward(self):
def forward(self):
inputs, h0 = self.input_vars, None
log_probs, entropys, sampled_arch = [], [], []
for iedge in range(self.num_edge):
outputs, h0 = self.w_lstm(inputs, h0)
logits = self.w_pred(outputs)
logits = logits / self.temperature
logits = self.tanh_constant * torch.tanh(logits)
# distribution
op_distribution = Categorical(logits=logits)
op_index = op_distribution.sample()
sampled_arch.append( op_index.item() )
inputs, h0 = self.input_vars, None
log_probs, entropys, sampled_arch = [], [], []
for iedge in range(self.num_edge):
outputs, h0 = self.w_lstm(inputs, h0)
op_log_prob = op_distribution.log_prob(op_index)
log_probs.append( op_log_prob.view(-1) )
op_entropy = op_distribution.entropy()
entropys.append( op_entropy.view(-1) )
# obtain the input embedding for the next step
inputs = self.w_embd(op_index)
return torch.sum(torch.cat(log_probs)), torch.sum(torch.cat(entropys)), sampled_arch
logits = self.w_pred(outputs)
logits = logits / self.temperature
logits = self.tanh_constant * torch.tanh(logits)
# distribution
op_distribution = Categorical(logits=logits)
op_index = op_distribution.sample()
sampled_arch.append(op_index.item())
op_log_prob = op_distribution.log_prob(op_index)
log_probs.append(op_log_prob.view(-1))
op_entropy = op_distribution.entropy()
entropys.append(op_entropy.view(-1))
# obtain the input embedding for the next step
inputs = self.w_embd(op_index)
return (
torch.sum(torch.cat(log_probs)),
torch.sum(torch.cat(entropys)),
sampled_arch,
)

View File

@@ -5,107 +5,138 @@ import torch
import torch.nn as nn
from copy import deepcopy
from ..cell_operations import ResNetBasicblock
from .search_cells import NAS201SearchCell as SearchCell
from .genotypes import Structure
from .search_cells import NAS201SearchCell as SearchCell
from .genotypes import Structure
class TinyNetworkGDAS(nn.Module):
#def __init__(self, C, N, max_nodes, num_classes, search_space, affine=False, track_running_stats=True):
def __init__(self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats):
super(TinyNetworkGDAS, self).__init__()
self._C = C
self._layerN = N
self.max_nodes = max_nodes
self.stem = nn.Sequential(
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(C))
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
# def __init__(self, C, N, max_nodes, num_classes, search_space, affine=False, track_running_stats=True):
def __init__(
self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats
):
super(TinyNetworkGDAS, self).__init__()
self._C = C
self._layerN = N
self.max_nodes = max_nodes
self.stem = nn.Sequential(
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C)
)
C_prev, num_edge, edge2index = C, None, None
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
if reduction:
cell = ResNetBasicblock(C_prev, C_curr, 2)
else:
cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine, track_running_stats)
if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
self.cells.append( cell )
C_prev = cell.out_dim
self.op_names = deepcopy( search_space )
self._Layer = len(self.cells)
self.edge2index = edge2index
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
self.tau = 10
layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
def get_weights(self):
xlist = list( self.stem.parameters() ) + list( self.cells.parameters() )
xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() )
xlist+= list( self.classifier.parameters() )
return xlist
C_prev, num_edge, edge2index = C, None, None
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(
zip(layer_channels, layer_reductions)
):
if reduction:
cell = ResNetBasicblock(C_prev, C_curr, 2)
else:
cell = SearchCell(
C_prev,
C_curr,
1,
max_nodes,
search_space,
affine,
track_running_stats,
)
if num_edge is None:
num_edge, edge2index = cell.num_edges, cell.edge2index
else:
assert (
num_edge == cell.num_edges and edge2index == cell.edge2index
), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges)
self.cells.append(cell)
C_prev = cell.out_dim
self.op_names = deepcopy(search_space)
self._Layer = len(self.cells)
self.edge2index = edge2index
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.arch_parameters = nn.Parameter(
1e-3 * torch.randn(num_edge, len(search_space))
)
self.tau = 10
def set_tau(self, tau):
self.tau = tau
def get_weights(self):
xlist = list(self.stem.parameters()) + list(self.cells.parameters())
xlist += list(self.lastact.parameters()) + list(
self.global_pooling.parameters()
)
xlist += list(self.classifier.parameters())
return xlist
def get_tau(self):
return self.tau
def set_tau(self, tau):
self.tau = tau
def get_alphas(self):
return [self.arch_parameters]
def get_tau(self):
return self.tau
def show_alphas(self):
with torch.no_grad():
return 'arch-parameters :\n{:}'.format( nn.functional.softmax(self.arch_parameters, dim=-1).cpu() )
def get_alphas(self):
return [self.arch_parameters]
def get_message(self):
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
return string
def extra_repr(self):
return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
def genotype(self):
genotypes = []
for i in range(1, self.max_nodes):
xlist = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
def show_alphas(self):
with torch.no_grad():
weights = self.arch_parameters[ self.edge2index[node_str] ]
op_name = self.op_names[ weights.argmax().item() ]
xlist.append((op_name, j))
genotypes.append( tuple(xlist) )
return Structure( genotypes )
return "arch-parameters :\n{:}".format(
nn.functional.softmax(self.arch_parameters, dim=-1).cpu()
)
def forward(self, inputs):
while True:
gumbels = -torch.empty_like(self.arch_parameters).exponential_().log()
logits = (self.arch_parameters.log_softmax(dim=1) + gumbels) / self.tau
probs = nn.functional.softmax(logits, dim=1)
index = probs.max(-1, keepdim=True)[1]
one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0)
hardwts = one_h - probs.detach() + probs
if (torch.isinf(gumbels).any()) or (torch.isinf(probs).any()) or (torch.isnan(probs).any()):
continue
else: break
def get_message(self):
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += "\n {:02d}/{:02d} :: {:}".format(
i, len(self.cells), cell.extra_repr()
)
return string
feature = self.stem(inputs)
for i, cell in enumerate(self.cells):
if isinstance(cell, SearchCell):
feature = cell.forward_gdas(feature, hardwts, index)
else:
feature = cell(feature)
out = self.lastact(feature)
out = self.global_pooling( out )
out = out.view(out.size(0), -1)
logits = self.classifier(out)
def extra_repr(self):
return "{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})".format(
name=self.__class__.__name__, **self.__dict__
)
return out, logits
def genotype(self):
genotypes = []
for i in range(1, self.max_nodes):
xlist = []
for j in range(i):
node_str = "{:}<-{:}".format(i, j)
with torch.no_grad():
weights = self.arch_parameters[self.edge2index[node_str]]
op_name = self.op_names[weights.argmax().item()]
xlist.append((op_name, j))
genotypes.append(tuple(xlist))
return Structure(genotypes)
def forward(self, inputs):
while True:
gumbels = -torch.empty_like(self.arch_parameters).exponential_().log()
logits = (self.arch_parameters.log_softmax(dim=1) + gumbels) / self.tau
probs = nn.functional.softmax(logits, dim=1)
index = probs.max(-1, keepdim=True)[1]
one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0)
hardwts = one_h - probs.detach() + probs
if (
(torch.isinf(gumbels).any())
or (torch.isinf(probs).any())
or (torch.isnan(probs).any())
):
continue
else:
break
feature = self.stem(inputs)
for i, cell in enumerate(self.cells):
if isinstance(cell, SearchCell):
feature = cell.forward_gdas(feature, hardwts, index)
else:
feature = cell(feature)
out = self.lastact(feature)
out = self.global_pooling(out)
out = out.view(out.size(0), -1)
logits = self.classifier(out)
return out, logits

View File

@@ -10,116 +10,190 @@ from models.cell_operations import RAW_OP_CLASSES
# The macro structure is based on NASNet
class NASNetworkGDAS_FRC(nn.Module):
def __init__(
self,
C,
N,
steps,
multiplier,
stem_multiplier,
num_classes,
search_space,
affine,
track_running_stats,
):
super(NASNetworkGDAS_FRC, self).__init__()
self._C = C
self._layerN = N
self._steps = steps
self._multiplier = multiplier
self.stem = nn.Sequential(
nn.Conv2d(3, C * stem_multiplier, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(C * stem_multiplier),
)
def __init__(self, C, N, steps, multiplier, stem_multiplier, num_classes, search_space, affine, track_running_stats):
super(NASNetworkGDAS_FRC, self).__init__()
self._C = C
self._layerN = N
self._steps = steps
self._multiplier = multiplier
self.stem = nn.Sequential(
nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(C*stem_multiplier))
# config for each layer
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * (N-1) + [C*4 ] + [C*4 ] * (N-1)
layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1)
# config for each layer
layer_channels = (
[C] * N + [C * 2] + [C * 2] * (N - 1) + [C * 4] + [C * 4] * (N - 1)
)
layer_reductions = (
[False] * N + [True] + [False] * (N - 1) + [True] + [False] * (N - 1)
)
num_edge, edge2index = None, None
C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False
num_edge, edge2index = None, None
C_prev_prev, C_prev, C_curr, reduction_prev = (
C * stem_multiplier,
C * stem_multiplier,
C,
False,
)
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
if reduction:
cell = RAW_OP_CLASSES['gdas_reduction'](C_prev_prev, C_prev, C_curr, reduction_prev, affine, track_running_stats)
else:
cell = SearchCell(search_space, steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats)
if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
else: assert reduction or num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
self.cells.append( cell )
C_prev_prev, C_prev, reduction_prev = C_prev, cell.multiplier * C_curr, reduction
self.op_names = deepcopy( search_space )
self._Layer = len(self.cells)
self.edge2index = edge2index
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
self.tau = 10
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(
zip(layer_channels, layer_reductions)
):
if reduction:
cell = RAW_OP_CLASSES["gdas_reduction"](
C_prev_prev,
C_prev,
C_curr,
reduction_prev,
affine,
track_running_stats,
)
else:
cell = SearchCell(
search_space,
steps,
multiplier,
C_prev_prev,
C_prev,
C_curr,
reduction,
reduction_prev,
affine,
track_running_stats,
)
if num_edge is None:
num_edge, edge2index = cell.num_edges, cell.edge2index
else:
assert (
reduction
or num_edge == cell.num_edges
and edge2index == cell.edge2index
), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges)
self.cells.append(cell)
C_prev_prev, C_prev, reduction_prev = (
C_prev,
cell.multiplier * C_curr,
reduction,
)
self.op_names = deepcopy(search_space)
self._Layer = len(self.cells)
self.edge2index = edge2index
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.arch_parameters = nn.Parameter(
1e-3 * torch.randn(num_edge, len(search_space))
)
self.tau = 10
def get_weights(self):
xlist = list( self.stem.parameters() ) + list( self.cells.parameters() )
xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() )
xlist+= list( self.classifier.parameters() )
return xlist
def get_weights(self):
xlist = list(self.stem.parameters()) + list(self.cells.parameters())
xlist += list(self.lastact.parameters()) + list(
self.global_pooling.parameters()
)
xlist += list(self.classifier.parameters())
return xlist
def set_tau(self, tau):
self.tau = tau
def set_tau(self, tau):
self.tau = tau
def get_tau(self):
return self.tau
def get_tau(self):
return self.tau
def get_alphas(self):
return [self.arch_parameters]
def get_alphas(self):
return [self.arch_parameters]
def show_alphas(self):
with torch.no_grad():
A = 'arch-normal-parameters :\n{:}'.format(nn.functional.softmax(self.arch_parameters, dim=-1).cpu())
return '{:}'.format(A)
def show_alphas(self):
with torch.no_grad():
A = "arch-normal-parameters :\n{:}".format(
nn.functional.softmax(self.arch_parameters, dim=-1).cpu()
)
return "{:}".format(A)
def get_message(self):
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
return string
def get_message(self):
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += "\n {:02d}/{:02d} :: {:}".format(
i, len(self.cells), cell.extra_repr()
)
return string
def extra_repr(self):
return ('{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
def extra_repr(self):
return "{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})".format(
name=self.__class__.__name__, **self.__dict__
)
def genotype(self):
def _parse(weights):
gene = []
for i in range(self._steps):
edges = []
for j in range(2+i):
node_str = '{:}<-{:}'.format(i, j)
ws = weights[ self.edge2index[node_str] ]
for k, op_name in enumerate(self.op_names):
if op_name == 'none': continue
edges.append( (op_name, j, ws[k]) )
edges = sorted(edges, key=lambda x: -x[-1])
selected_edges = edges[:2]
gene.append( tuple(selected_edges) )
return gene
with torch.no_grad():
gene_normal = _parse(torch.softmax(self.arch_parameters, dim=-1).cpu().numpy())
return {'normal': gene_normal, 'normal_concat': list(range(2+self._steps-self._multiplier, self._steps+2))}
def genotype(self):
def _parse(weights):
gene = []
for i in range(self._steps):
edges = []
for j in range(2 + i):
node_str = "{:}<-{:}".format(i, j)
ws = weights[self.edge2index[node_str]]
for k, op_name in enumerate(self.op_names):
if op_name == "none":
continue
edges.append((op_name, j, ws[k]))
edges = sorted(edges, key=lambda x: -x[-1])
selected_edges = edges[:2]
gene.append(tuple(selected_edges))
return gene
def forward(self, inputs):
def get_gumbel_prob(xins):
while True:
gumbels = -torch.empty_like(xins).exponential_().log()
logits = (xins.log_softmax(dim=1) + gumbels) / self.tau
probs = nn.functional.softmax(logits, dim=1)
index = probs.max(-1, keepdim=True)[1]
one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0)
hardwts = one_h - probs.detach() + probs
if (torch.isinf(gumbels).any()) or (torch.isinf(probs).any()) or (torch.isnan(probs).any()):
continue
else: break
return hardwts, index
with torch.no_grad():
gene_normal = _parse(
torch.softmax(self.arch_parameters, dim=-1).cpu().numpy()
)
return {
"normal": gene_normal,
"normal_concat": list(
range(2 + self._steps - self._multiplier, self._steps + 2)
),
}
hardwts, index = get_gumbel_prob(self.arch_parameters)
def forward(self, inputs):
def get_gumbel_prob(xins):
while True:
gumbels = -torch.empty_like(xins).exponential_().log()
logits = (xins.log_softmax(dim=1) + gumbels) / self.tau
probs = nn.functional.softmax(logits, dim=1)
index = probs.max(-1, keepdim=True)[1]
one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0)
hardwts = one_h - probs.detach() + probs
if (
(torch.isinf(gumbels).any())
or (torch.isinf(probs).any())
or (torch.isnan(probs).any())
):
continue
else:
break
return hardwts, index
s0 = s1 = self.stem(inputs)
for i, cell in enumerate(self.cells):
if cell.reduction:
s0, s1 = s1, cell(s0, s1)
else:
s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index)
out = self.lastact(s1)
out = self.global_pooling( out )
out = out.view(out.size(0), -1)
logits = self.classifier(out)
hardwts, index = get_gumbel_prob(self.arch_parameters)
return out, logits
s0 = s1 = self.stem(inputs)
for i, cell in enumerate(self.cells):
if cell.reduction:
s0, s1 = s1, cell(s0, s1)
else:
s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index)
out = self.lastact(s1)
out = self.global_pooling(out)
out = out.view(out.size(0), -1)
logits = self.classifier(out)
return out, logits

View File

@@ -9,117 +9,189 @@ from .search_cells import NASNetSearchCell as SearchCell
# The macro structure is based on NASNet
class NASNetworkGDAS(nn.Module):
def __init__(
self,
C,
N,
steps,
multiplier,
stem_multiplier,
num_classes,
search_space,
affine,
track_running_stats,
):
super(NASNetworkGDAS, self).__init__()
self._C = C
self._layerN = N
self._steps = steps
self._multiplier = multiplier
self.stem = nn.Sequential(
nn.Conv2d(3, C * stem_multiplier, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(C * stem_multiplier),
)
def __init__(self, C, N, steps, multiplier, stem_multiplier, num_classes, search_space, affine, track_running_stats):
super(NASNetworkGDAS, self).__init__()
self._C = C
self._layerN = N
self._steps = steps
self._multiplier = multiplier
self.stem = nn.Sequential(
nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(C*stem_multiplier))
# config for each layer
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * (N-1) + [C*4 ] + [C*4 ] * (N-1)
layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1)
# config for each layer
layer_channels = (
[C] * N + [C * 2] + [C * 2] * (N - 1) + [C * 4] + [C * 4] * (N - 1)
)
layer_reductions = (
[False] * N + [True] + [False] * (N - 1) + [True] + [False] * (N - 1)
)
num_edge, edge2index = None, None
C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False
num_edge, edge2index = None, None
C_prev_prev, C_prev, C_curr, reduction_prev = (
C * stem_multiplier,
C * stem_multiplier,
C,
False,
)
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
cell = SearchCell(search_space, steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats)
if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
self.cells.append( cell )
C_prev_prev, C_prev, reduction_prev = C_prev, multiplier*C_curr, reduction
self.op_names = deepcopy( search_space )
self._Layer = len(self.cells)
self.edge2index = edge2index
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.arch_normal_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
self.arch_reduce_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
self.tau = 10
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(
zip(layer_channels, layer_reductions)
):
cell = SearchCell(
search_space,
steps,
multiplier,
C_prev_prev,
C_prev,
C_curr,
reduction,
reduction_prev,
affine,
track_running_stats,
)
if num_edge is None:
num_edge, edge2index = cell.num_edges, cell.edge2index
else:
assert (
num_edge == cell.num_edges and edge2index == cell.edge2index
), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges)
self.cells.append(cell)
C_prev_prev, C_prev, reduction_prev = C_prev, multiplier * C_curr, reduction
self.op_names = deepcopy(search_space)
self._Layer = len(self.cells)
self.edge2index = edge2index
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.arch_normal_parameters = nn.Parameter(
1e-3 * torch.randn(num_edge, len(search_space))
)
self.arch_reduce_parameters = nn.Parameter(
1e-3 * torch.randn(num_edge, len(search_space))
)
self.tau = 10
def get_weights(self):
xlist = list( self.stem.parameters() ) + list( self.cells.parameters() )
xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() )
xlist+= list( self.classifier.parameters() )
return xlist
def get_weights(self):
xlist = list(self.stem.parameters()) + list(self.cells.parameters())
xlist += list(self.lastact.parameters()) + list(
self.global_pooling.parameters()
)
xlist += list(self.classifier.parameters())
return xlist
def set_tau(self, tau):
self.tau = tau
def set_tau(self, tau):
self.tau = tau
def get_tau(self):
return self.tau
def get_tau(self):
return self.tau
def get_alphas(self):
return [self.arch_normal_parameters, self.arch_reduce_parameters]
def get_alphas(self):
return [self.arch_normal_parameters, self.arch_reduce_parameters]
def show_alphas(self):
with torch.no_grad():
A = 'arch-normal-parameters :\n{:}'.format( nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu() )
B = 'arch-reduce-parameters :\n{:}'.format( nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu() )
return '{:}\n{:}'.format(A, B)
def show_alphas(self):
with torch.no_grad():
A = "arch-normal-parameters :\n{:}".format(
nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu()
)
B = "arch-reduce-parameters :\n{:}".format(
nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu()
)
return "{:}\n{:}".format(A, B)
def get_message(self):
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
return string
def get_message(self):
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += "\n {:02d}/{:02d} :: {:}".format(
i, len(self.cells), cell.extra_repr()
)
return string
def extra_repr(self):
return ('{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
def extra_repr(self):
return "{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})".format(
name=self.__class__.__name__, **self.__dict__
)
def genotype(self):
def _parse(weights):
gene = []
for i in range(self._steps):
edges = []
for j in range(2+i):
node_str = '{:}<-{:}'.format(i, j)
ws = weights[ self.edge2index[node_str] ]
for k, op_name in enumerate(self.op_names):
if op_name == 'none': continue
edges.append( (op_name, j, ws[k]) )
edges = sorted(edges, key=lambda x: -x[-1])
selected_edges = edges[:2]
gene.append( tuple(selected_edges) )
return gene
with torch.no_grad():
gene_normal = _parse(torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy())
gene_reduce = _parse(torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy())
return {'normal': gene_normal, 'normal_concat': list(range(2+self._steps-self._multiplier, self._steps+2)),
'reduce': gene_reduce, 'reduce_concat': list(range(2+self._steps-self._multiplier, self._steps+2))}
def genotype(self):
def _parse(weights):
gene = []
for i in range(self._steps):
edges = []
for j in range(2 + i):
node_str = "{:}<-{:}".format(i, j)
ws = weights[self.edge2index[node_str]]
for k, op_name in enumerate(self.op_names):
if op_name == "none":
continue
edges.append((op_name, j, ws[k]))
edges = sorted(edges, key=lambda x: -x[-1])
selected_edges = edges[:2]
gene.append(tuple(selected_edges))
return gene
def forward(self, inputs):
def get_gumbel_prob(xins):
while True:
gumbels = -torch.empty_like(xins).exponential_().log()
logits = (xins.log_softmax(dim=1) + gumbels) / self.tau
probs = nn.functional.softmax(logits, dim=1)
index = probs.max(-1, keepdim=True)[1]
one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0)
hardwts = one_h - probs.detach() + probs
if (torch.isinf(gumbels).any()) or (torch.isinf(probs).any()) or (torch.isnan(probs).any()):
continue
else: break
return hardwts, index
with torch.no_grad():
gene_normal = _parse(
torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy()
)
gene_reduce = _parse(
torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy()
)
return {
"normal": gene_normal,
"normal_concat": list(
range(2 + self._steps - self._multiplier, self._steps + 2)
),
"reduce": gene_reduce,
"reduce_concat": list(
range(2 + self._steps - self._multiplier, self._steps + 2)
),
}
normal_hardwts, normal_index = get_gumbel_prob(self.arch_normal_parameters)
reduce_hardwts, reduce_index = get_gumbel_prob(self.arch_reduce_parameters)
def forward(self, inputs):
def get_gumbel_prob(xins):
while True:
gumbels = -torch.empty_like(xins).exponential_().log()
logits = (xins.log_softmax(dim=1) + gumbels) / self.tau
probs = nn.functional.softmax(logits, dim=1)
index = probs.max(-1, keepdim=True)[1]
one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0)
hardwts = one_h - probs.detach() + probs
if (
(torch.isinf(gumbels).any())
or (torch.isinf(probs).any())
or (torch.isnan(probs).any())
):
continue
else:
break
return hardwts, index
s0 = s1 = self.stem(inputs)
for i, cell in enumerate(self.cells):
if cell.reduction: hardwts, index = reduce_hardwts, reduce_index
else : hardwts, index = normal_hardwts, normal_index
s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index)
out = self.lastact(s1)
out = self.global_pooling( out )
out = out.view(out.size(0), -1)
logits = self.classifier(out)
normal_hardwts, normal_index = get_gumbel_prob(self.arch_normal_parameters)
reduce_hardwts, reduce_index = get_gumbel_prob(self.arch_reduce_parameters)
return out, logits
s0 = s1 = self.stem(inputs)
for i, cell in enumerate(self.cells):
if cell.reduction:
hardwts, index = reduce_hardwts, reduce_index
else:
hardwts, index = normal_hardwts, normal_index
s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index)
out = self.lastact(s1)
out = self.global_pooling(out)
out = out.view(out.size(0), -1)
logits = self.classifier(out)
return out, logits

View File

@@ -1,81 +1,102 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##############################################################################
# Random Search and Reproducibility for Neural Architecture Search, UAI 2019 #
# Random Search and Reproducibility for Neural Architecture Search, UAI 2019 #
##############################################################################
import torch, random
import torch.nn as nn
from copy import deepcopy
from ..cell_operations import ResNetBasicblock
from .search_cells import NAS201SearchCell as SearchCell
from .genotypes import Structure
from .search_cells import NAS201SearchCell as SearchCell
from .genotypes import Structure
class TinyNetworkRANDOM(nn.Module):
def __init__(
self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats
):
super(TinyNetworkRANDOM, self).__init__()
self._C = C
self._layerN = N
self.max_nodes = max_nodes
self.stem = nn.Sequential(
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C)
)
def __init__(self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats):
super(TinyNetworkRANDOM, self).__init__()
self._C = C
self._layerN = N
self.max_nodes = max_nodes
self.stem = nn.Sequential(
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(C))
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
C_prev, num_edge, edge2index = C, None, None
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
if reduction:
cell = ResNetBasicblock(C_prev, C_curr, 2)
else:
cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine, track_running_stats)
if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
self.cells.append( cell )
C_prev = cell.out_dim
self.op_names = deepcopy( search_space )
self._Layer = len(self.cells)
self.edge2index = edge2index
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.arch_cache = None
def get_message(self):
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
return string
C_prev, num_edge, edge2index = C, None, None
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(
zip(layer_channels, layer_reductions)
):
if reduction:
cell = ResNetBasicblock(C_prev, C_curr, 2)
else:
cell = SearchCell(
C_prev,
C_curr,
1,
max_nodes,
search_space,
affine,
track_running_stats,
)
if num_edge is None:
num_edge, edge2index = cell.num_edges, cell.edge2index
else:
assert (
num_edge == cell.num_edges and edge2index == cell.edge2index
), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges)
self.cells.append(cell)
C_prev = cell.out_dim
self.op_names = deepcopy(search_space)
self._Layer = len(self.cells)
self.edge2index = edge2index
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.arch_cache = None
def extra_repr(self):
return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
def get_message(self):
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += "\n {:02d}/{:02d} :: {:}".format(
i, len(self.cells), cell.extra_repr()
)
return string
def random_genotype(self, set_cache):
genotypes = []
for i in range(1, self.max_nodes):
xlist = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
op_name = random.choice( self.op_names )
xlist.append((op_name, j))
genotypes.append( tuple(xlist) )
arch = Structure( genotypes )
if set_cache: self.arch_cache = arch
return arch
def extra_repr(self):
return "{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})".format(
name=self.__class__.__name__, **self.__dict__
)
def forward(self, inputs):
def random_genotype(self, set_cache):
genotypes = []
for i in range(1, self.max_nodes):
xlist = []
for j in range(i):
node_str = "{:}<-{:}".format(i, j)
op_name = random.choice(self.op_names)
xlist.append((op_name, j))
genotypes.append(tuple(xlist))
arch = Structure(genotypes)
if set_cache:
self.arch_cache = arch
return arch
feature = self.stem(inputs)
for i, cell in enumerate(self.cells):
if isinstance(cell, SearchCell):
feature = cell.forward_dynamic(feature, self.arch_cache)
else: feature = cell(feature)
def forward(self, inputs):
out = self.lastact(feature)
out = self.global_pooling( out )
out = out.view(out.size(0), -1)
logits = self.classifier(out)
return out, logits
feature = self.stem(inputs)
for i, cell in enumerate(self.cells):
if isinstance(cell, SearchCell):
feature = cell.forward_dynamic(feature, self.arch_cache)
else:
feature = cell(feature)
out = self.lastact(feature)
out = self.global_pooling(out)
out = out.view(out.size(0), -1)
logits = self.classifier(out)
return out, logits

View File

@@ -7,146 +7,172 @@ import torch, random
import torch.nn as nn
from copy import deepcopy
from ..cell_operations import ResNetBasicblock
from .search_cells import NAS201SearchCell as SearchCell
from .genotypes import Structure
from .search_cells import NAS201SearchCell as SearchCell
from .genotypes import Structure
class TinyNetworkSETN(nn.Module):
def __init__(
self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats
):
super(TinyNetworkSETN, self).__init__()
self._C = C
self._layerN = N
self.max_nodes = max_nodes
self.stem = nn.Sequential(
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C)
)
def __init__(self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats):
super(TinyNetworkSETN, self).__init__()
self._C = C
self._layerN = N
self.max_nodes = max_nodes
self.stem = nn.Sequential(
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(C))
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
C_prev, num_edge, edge2index = C, None, None
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
if reduction:
cell = ResNetBasicblock(C_prev, C_curr, 2)
else:
cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine, track_running_stats)
if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
self.cells.append( cell )
C_prev = cell.out_dim
self.op_names = deepcopy( search_space )
self._Layer = len(self.cells)
self.edge2index = edge2index
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
self.mode = 'urs'
self.dynamic_cell = None
def set_cal_mode(self, mode, dynamic_cell=None):
assert mode in ['urs', 'joint', 'select', 'dynamic']
self.mode = mode
if mode == 'dynamic': self.dynamic_cell = deepcopy( dynamic_cell )
else : self.dynamic_cell = None
C_prev, num_edge, edge2index = C, None, None
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(
zip(layer_channels, layer_reductions)
):
if reduction:
cell = ResNetBasicblock(C_prev, C_curr, 2)
else:
cell = SearchCell(
C_prev,
C_curr,
1,
max_nodes,
search_space,
affine,
track_running_stats,
)
if num_edge is None:
num_edge, edge2index = cell.num_edges, cell.edge2index
else:
assert (
num_edge == cell.num_edges and edge2index == cell.edge2index
), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges)
self.cells.append(cell)
C_prev = cell.out_dim
self.op_names = deepcopy(search_space)
self._Layer = len(self.cells)
self.edge2index = edge2index
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.arch_parameters = nn.Parameter(
1e-3 * torch.randn(num_edge, len(search_space))
)
self.mode = "urs"
self.dynamic_cell = None
def get_cal_mode(self):
return self.mode
def get_weights(self):
xlist = list( self.stem.parameters() ) + list( self.cells.parameters() )
xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() )
xlist+= list( self.classifier.parameters() )
return xlist
def get_alphas(self):
return [self.arch_parameters]
def get_message(self):
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
return string
def extra_repr(self):
return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
def genotype(self):
genotypes = []
for i in range(1, self.max_nodes):
xlist = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
with torch.no_grad():
weights = self.arch_parameters[ self.edge2index[node_str] ]
op_name = self.op_names[ weights.argmax().item() ]
xlist.append((op_name, j))
genotypes.append( tuple(xlist) )
return Structure( genotypes )
def dync_genotype(self, use_random=False):
genotypes = []
with torch.no_grad():
alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1)
for i in range(1, self.max_nodes):
xlist = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
if use_random:
op_name = random.choice(self.op_names)
def set_cal_mode(self, mode, dynamic_cell=None):
assert mode in ["urs", "joint", "select", "dynamic"]
self.mode = mode
if mode == "dynamic":
self.dynamic_cell = deepcopy(dynamic_cell)
else:
weights = alphas_cpu[ self.edge2index[node_str] ]
op_index = torch.multinomial(weights, 1).item()
op_name = self.op_names[ op_index ]
xlist.append((op_name, j))
genotypes.append( tuple(xlist) )
return Structure( genotypes )
self.dynamic_cell = None
def get_log_prob(self, arch):
with torch.no_grad():
logits = nn.functional.log_softmax(self.arch_parameters, dim=-1)
select_logits = []
for i, node_info in enumerate(arch.nodes):
for op, xin in node_info:
node_str = '{:}<-{:}'.format(i+1, xin)
op_index = self.op_names.index(op)
select_logits.append( logits[self.edge2index[node_str], op_index] )
return sum(select_logits).item()
def get_cal_mode(self):
return self.mode
def get_weights(self):
xlist = list(self.stem.parameters()) + list(self.cells.parameters())
xlist += list(self.lastact.parameters()) + list(
self.global_pooling.parameters()
)
xlist += list(self.classifier.parameters())
return xlist
def return_topK(self, K):
archs = Structure.gen_all(self.op_names, self.max_nodes, False)
pairs = [(self.get_log_prob(arch), arch) for arch in archs]
if K < 0 or K >= len(archs): K = len(archs)
sorted_pairs = sorted(pairs, key=lambda x: -x[0])
return_pairs = [sorted_pairs[_][1] for _ in range(K)]
return return_pairs
def get_alphas(self):
return [self.arch_parameters]
def get_message(self):
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += "\n {:02d}/{:02d} :: {:}".format(
i, len(self.cells), cell.extra_repr()
)
return string
def forward(self, inputs):
alphas = nn.functional.softmax(self.arch_parameters, dim=-1)
with torch.no_grad():
alphas_cpu = alphas.detach().cpu()
def extra_repr(self):
return "{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})".format(
name=self.__class__.__name__, **self.__dict__
)
feature = self.stem(inputs)
for i, cell in enumerate(self.cells):
if isinstance(cell, SearchCell):
if self.mode == 'urs':
feature = cell.forward_urs(feature)
elif self.mode == 'select':
feature = cell.forward_select(feature, alphas_cpu)
elif self.mode == 'joint':
feature = cell.forward_joint(feature, alphas)
elif self.mode == 'dynamic':
feature = cell.forward_dynamic(feature, self.dynamic_cell)
else: raise ValueError('invalid mode={:}'.format(self.mode))
else: feature = cell(feature)
def genotype(self):
genotypes = []
for i in range(1, self.max_nodes):
xlist = []
for j in range(i):
node_str = "{:}<-{:}".format(i, j)
with torch.no_grad():
weights = self.arch_parameters[self.edge2index[node_str]]
op_name = self.op_names[weights.argmax().item()]
xlist.append((op_name, j))
genotypes.append(tuple(xlist))
return Structure(genotypes)
out = self.lastact(feature)
out = self.global_pooling( out )
out = out.view(out.size(0), -1)
logits = self.classifier(out)
def dync_genotype(self, use_random=False):
genotypes = []
with torch.no_grad():
alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1)
for i in range(1, self.max_nodes):
xlist = []
for j in range(i):
node_str = "{:}<-{:}".format(i, j)
if use_random:
op_name = random.choice(self.op_names)
else:
weights = alphas_cpu[self.edge2index[node_str]]
op_index = torch.multinomial(weights, 1).item()
op_name = self.op_names[op_index]
xlist.append((op_name, j))
genotypes.append(tuple(xlist))
return Structure(genotypes)
return out, logits
def get_log_prob(self, arch):
with torch.no_grad():
logits = nn.functional.log_softmax(self.arch_parameters, dim=-1)
select_logits = []
for i, node_info in enumerate(arch.nodes):
for op, xin in node_info:
node_str = "{:}<-{:}".format(i + 1, xin)
op_index = self.op_names.index(op)
select_logits.append(logits[self.edge2index[node_str], op_index])
return sum(select_logits).item()
def return_topK(self, K):
archs = Structure.gen_all(self.op_names, self.max_nodes, False)
pairs = [(self.get_log_prob(arch), arch) for arch in archs]
if K < 0 or K >= len(archs):
K = len(archs)
sorted_pairs = sorted(pairs, key=lambda x: -x[0])
return_pairs = [sorted_pairs[_][1] for _ in range(K)]
return return_pairs
def forward(self, inputs):
alphas = nn.functional.softmax(self.arch_parameters, dim=-1)
with torch.no_grad():
alphas_cpu = alphas.detach().cpu()
feature = self.stem(inputs)
for i, cell in enumerate(self.cells):
if isinstance(cell, SearchCell):
if self.mode == "urs":
feature = cell.forward_urs(feature)
elif self.mode == "select":
feature = cell.forward_select(feature, alphas_cpu)
elif self.mode == "joint":
feature = cell.forward_joint(feature, alphas)
elif self.mode == "dynamic":
feature = cell.forward_dynamic(feature, self.dynamic_cell)
else:
raise ValueError("invalid mode={:}".format(self.mode))
else:
feature = cell(feature)
out = self.lastact(feature)
out = self.global_pooling(out)
out = out.view(out.size(0), -1)
logits = self.classifier(out)
return out, logits

View File

@@ -7,133 +7,199 @@ import torch
import torch.nn as nn
from copy import deepcopy
from typing import List, Text, Dict
from .search_cells import NASNetSearchCell as SearchCell
from .search_cells import NASNetSearchCell as SearchCell
# The macro structure is based on NASNet
class NASNetworkSETN(nn.Module):
def __init__(
self,
C: int,
N: int,
steps: int,
multiplier: int,
stem_multiplier: int,
num_classes: int,
search_space: List[Text],
affine: bool,
track_running_stats: bool,
):
super(NASNetworkSETN, self).__init__()
self._C = C
self._layerN = N
self._steps = steps
self._multiplier = multiplier
self.stem = nn.Sequential(
nn.Conv2d(3, C * stem_multiplier, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(C * stem_multiplier),
)
def __init__(self, C: int, N: int, steps: int, multiplier: int, stem_multiplier: int,
num_classes: int, search_space: List[Text], affine: bool, track_running_stats: bool):
super(NASNetworkSETN, self).__init__()
self._C = C
self._layerN = N
self._steps = steps
self._multiplier = multiplier
self.stem = nn.Sequential(
nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(C*stem_multiplier))
# config for each layer
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * (N-1) + [C*4 ] + [C*4 ] * (N-1)
layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1)
# config for each layer
layer_channels = (
[C] * N + [C * 2] + [C * 2] * (N - 1) + [C * 4] + [C * 4] * (N - 1)
)
layer_reductions = (
[False] * N + [True] + [False] * (N - 1) + [True] + [False] * (N - 1)
)
num_edge, edge2index = None, None
C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False
num_edge, edge2index = None, None
C_prev_prev, C_prev, C_curr, reduction_prev = (
C * stem_multiplier,
C * stem_multiplier,
C,
False,
)
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
cell = SearchCell(search_space, steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats)
if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
self.cells.append( cell )
C_prev_prev, C_prev, reduction_prev = C_prev, multiplier*C_curr, reduction
self.op_names = deepcopy( search_space )
self._Layer = len(self.cells)
self.edge2index = edge2index
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.arch_normal_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
self.arch_reduce_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
self.mode = 'urs'
self.dynamic_cell = None
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(
zip(layer_channels, layer_reductions)
):
cell = SearchCell(
search_space,
steps,
multiplier,
C_prev_prev,
C_prev,
C_curr,
reduction,
reduction_prev,
affine,
track_running_stats,
)
if num_edge is None:
num_edge, edge2index = cell.num_edges, cell.edge2index
else:
assert (
num_edge == cell.num_edges and edge2index == cell.edge2index
), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges)
self.cells.append(cell)
C_prev_prev, C_prev, reduction_prev = C_prev, multiplier * C_curr, reduction
self.op_names = deepcopy(search_space)
self._Layer = len(self.cells)
self.edge2index = edge2index
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.arch_normal_parameters = nn.Parameter(
1e-3 * torch.randn(num_edge, len(search_space))
)
self.arch_reduce_parameters = nn.Parameter(
1e-3 * torch.randn(num_edge, len(search_space))
)
self.mode = "urs"
self.dynamic_cell = None
def set_cal_mode(self, mode, dynamic_cell=None):
assert mode in ['urs', 'joint', 'select', 'dynamic']
self.mode = mode
if mode == 'dynamic':
self.dynamic_cell = deepcopy(dynamic_cell)
else:
self.dynamic_cell = None
def get_weights(self):
xlist = list( self.stem.parameters() ) + list( self.cells.parameters() )
xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() )
xlist+= list( self.classifier.parameters() )
return xlist
def get_alphas(self):
return [self.arch_normal_parameters, self.arch_reduce_parameters]
def show_alphas(self):
with torch.no_grad():
A = 'arch-normal-parameters :\n{:}'.format( nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu() )
B = 'arch-reduce-parameters :\n{:}'.format( nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu() )
return '{:}\n{:}'.format(A, B)
def get_message(self):
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
return string
def extra_repr(self):
return ('{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
def dync_genotype(self, use_random=False):
genotypes = []
with torch.no_grad():
alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1)
for i in range(1, self.max_nodes):
xlist = []
for j in range(i):
node_str = '{:}<-{:}'.format(i, j)
if use_random:
op_name = random.choice(self.op_names)
def set_cal_mode(self, mode, dynamic_cell=None):
assert mode in ["urs", "joint", "select", "dynamic"]
self.mode = mode
if mode == "dynamic":
self.dynamic_cell = deepcopy(dynamic_cell)
else:
weights = alphas_cpu[ self.edge2index[node_str] ]
op_index = torch.multinomial(weights, 1).item()
op_name = self.op_names[ op_index ]
xlist.append((op_name, j))
genotypes.append( tuple(xlist) )
return Structure( genotypes )
self.dynamic_cell = None
def genotype(self):
def _parse(weights):
gene = []
for i in range(self._steps):
edges = []
for j in range(2+i):
node_str = '{:}<-{:}'.format(i, j)
ws = weights[ self.edge2index[node_str] ]
for k, op_name in enumerate(self.op_names):
if op_name == 'none': continue
edges.append( (op_name, j, ws[k]) )
edges = sorted(edges, key=lambda x: -x[-1])
selected_edges = edges[:2]
gene.append( tuple(selected_edges) )
return gene
with torch.no_grad():
gene_normal = _parse(torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy())
gene_reduce = _parse(torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy())
return {'normal': gene_normal, 'normal_concat': list(range(2+self._steps-self._multiplier, self._steps+2)),
'reduce': gene_reduce, 'reduce_concat': list(range(2+self._steps-self._multiplier, self._steps+2))}
def get_weights(self):
xlist = list(self.stem.parameters()) + list(self.cells.parameters())
xlist += list(self.lastact.parameters()) + list(
self.global_pooling.parameters()
)
xlist += list(self.classifier.parameters())
return xlist
def forward(self, inputs):
normal_hardwts = nn.functional.softmax(self.arch_normal_parameters, dim=-1)
reduce_hardwts = nn.functional.softmax(self.arch_reduce_parameters, dim=-1)
def get_alphas(self):
return [self.arch_normal_parameters, self.arch_reduce_parameters]
s0 = s1 = self.stem(inputs)
for i, cell in enumerate(self.cells):
# [TODO]
raise NotImplementedError
if cell.reduction: hardwts, index = reduce_hardwts, reduce_index
else : hardwts, index = normal_hardwts, normal_index
s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index)
out = self.lastact(s1)
out = self.global_pooling( out )
out = out.view(out.size(0), -1)
logits = self.classifier(out)
def show_alphas(self):
with torch.no_grad():
A = "arch-normal-parameters :\n{:}".format(
nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu()
)
B = "arch-reduce-parameters :\n{:}".format(
nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu()
)
return "{:}\n{:}".format(A, B)
return out, logits
def get_message(self):
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += "\n {:02d}/{:02d} :: {:}".format(
i, len(self.cells), cell.extra_repr()
)
return string
def extra_repr(self):
return "{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})".format(
name=self.__class__.__name__, **self.__dict__
)
def dync_genotype(self, use_random=False):
genotypes = []
with torch.no_grad():
alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1)
for i in range(1, self.max_nodes):
xlist = []
for j in range(i):
node_str = "{:}<-{:}".format(i, j)
if use_random:
op_name = random.choice(self.op_names)
else:
weights = alphas_cpu[self.edge2index[node_str]]
op_index = torch.multinomial(weights, 1).item()
op_name = self.op_names[op_index]
xlist.append((op_name, j))
genotypes.append(tuple(xlist))
return Structure(genotypes)
def genotype(self):
def _parse(weights):
gene = []
for i in range(self._steps):
edges = []
for j in range(2 + i):
node_str = "{:}<-{:}".format(i, j)
ws = weights[self.edge2index[node_str]]
for k, op_name in enumerate(self.op_names):
if op_name == "none":
continue
edges.append((op_name, j, ws[k]))
edges = sorted(edges, key=lambda x: -x[-1])
selected_edges = edges[:2]
gene.append(tuple(selected_edges))
return gene
with torch.no_grad():
gene_normal = _parse(
torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy()
)
gene_reduce = _parse(
torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy()
)
return {
"normal": gene_normal,
"normal_concat": list(
range(2 + self._steps - self._multiplier, self._steps + 2)
),
"reduce": gene_reduce,
"reduce_concat": list(
range(2 + self._steps - self._multiplier, self._steps + 2)
),
}
def forward(self, inputs):
normal_hardwts = nn.functional.softmax(self.arch_normal_parameters, dim=-1)
reduce_hardwts = nn.functional.softmax(self.arch_reduce_parameters, dim=-1)
s0 = s1 = self.stem(inputs)
for i, cell in enumerate(self.cells):
# [TODO]
raise NotImplementedError
if cell.reduction:
hardwts, index = reduce_hardwts, reduce_index
else:
hardwts, index = normal_hardwts, normal_index
s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index)
out = self.lastact(s1)
out = self.global_pooling(out)
out = out.view(out.size(0), -1)
logits = self.classifier(out)
return out, logits

View File

@@ -3,60 +3,72 @@ import torch.nn as nn
def copy_conv(module, init):
assert isinstance(module, nn.Conv2d), 'invalid module : {:}'.format(module)
assert isinstance(init , nn.Conv2d), 'invalid module : {:}'.format(init)
new_i, new_o = module.in_channels, module.out_channels
module.weight.copy_( init.weight.detach()[:new_o, :new_i] )
if module.bias is not None:
module.bias.copy_( init.bias.detach()[:new_o] )
assert isinstance(module, nn.Conv2d), "invalid module : {:}".format(module)
assert isinstance(init, nn.Conv2d), "invalid module : {:}".format(init)
new_i, new_o = module.in_channels, module.out_channels
module.weight.copy_(init.weight.detach()[:new_o, :new_i])
if module.bias is not None:
module.bias.copy_(init.bias.detach()[:new_o])
def copy_bn (module, init):
assert isinstance(module, nn.BatchNorm2d), 'invalid module : {:}'.format(module)
assert isinstance(init , nn.BatchNorm2d), 'invalid module : {:}'.format(init)
num_features = module.num_features
if module.weight is not None:
module.weight.copy_( init.weight.detach()[:num_features] )
if module.bias is not None:
module.bias.copy_( init.bias.detach()[:num_features] )
if module.running_mean is not None:
module.running_mean.copy_( init.running_mean.detach()[:num_features] )
if module.running_var is not None:
module.running_var.copy_( init.running_var.detach()[:num_features] )
def copy_fc (module, init):
assert isinstance(module, nn.Linear), 'invalid module : {:}'.format(module)
assert isinstance(init , nn.Linear), 'invalid module : {:}'.format(init)
new_i, new_o = module.in_features, module.out_features
module.weight.copy_( init.weight.detach()[:new_o, :new_i] )
if module.bias is not None:
module.bias.copy_( init.bias.detach()[:new_o] )
def copy_bn(module, init):
assert isinstance(module, nn.BatchNorm2d), "invalid module : {:}".format(module)
assert isinstance(init, nn.BatchNorm2d), "invalid module : {:}".format(init)
num_features = module.num_features
if module.weight is not None:
module.weight.copy_(init.weight.detach()[:num_features])
if module.bias is not None:
module.bias.copy_(init.bias.detach()[:num_features])
if module.running_mean is not None:
module.running_mean.copy_(init.running_mean.detach()[:num_features])
if module.running_var is not None:
module.running_var.copy_(init.running_var.detach()[:num_features])
def copy_fc(module, init):
assert isinstance(module, nn.Linear), "invalid module : {:}".format(module)
assert isinstance(init, nn.Linear), "invalid module : {:}".format(init)
new_i, new_o = module.in_features, module.out_features
module.weight.copy_(init.weight.detach()[:new_o, :new_i])
if module.bias is not None:
module.bias.copy_(init.bias.detach()[:new_o])
def copy_base(module, init):
assert type(module).__name__ in ['ConvBNReLU', 'Downsample'], 'invalid module : {:}'.format(module)
assert type( init).__name__ in ['ConvBNReLU', 'Downsample'], 'invalid module : {:}'.format( init)
if module.conv is not None:
copy_conv(module.conv, init.conv)
if module.bn is not None:
copy_bn (module.bn, init.bn)
assert type(module).__name__ in [
"ConvBNReLU",
"Downsample",
], "invalid module : {:}".format(module)
assert type(init).__name__ in [
"ConvBNReLU",
"Downsample",
], "invalid module : {:}".format(init)
if module.conv is not None:
copy_conv(module.conv, init.conv)
if module.bn is not None:
copy_bn(module.bn, init.bn)
def copy_basic(module, init):
copy_base(module.conv_a, init.conv_a)
copy_base(module.conv_b, init.conv_b)
if module.downsample is not None:
if init.downsample is not None:
copy_base(module.downsample, init.downsample)
#else:
# import pdb; pdb.set_trace()
copy_base(module.conv_a, init.conv_a)
copy_base(module.conv_b, init.conv_b)
if module.downsample is not None:
if init.downsample is not None:
copy_base(module.downsample, init.downsample)
# else:
# import pdb; pdb.set_trace()
def init_from_model(network, init_model):
with torch.no_grad():
copy_fc(network.classifier, init_model.classifier)
for base, target in zip(init_model.layers, network.layers):
assert type(base).__name__ == type(target).__name__, 'invalid type : {:} vs {:}'.format(base, target)
if type(base).__name__ == 'ConvBNReLU':
copy_base(target, base)
elif type(base).__name__ == 'ResNetBasicblock':
copy_basic(target, base)
else:
raise ValueError('unknown type name : {:}'.format( type(base).__name__ ))
with torch.no_grad():
copy_fc(network.classifier, init_model.classifier)
for base, target in zip(init_model.layers, network.layers):
assert (
type(base).__name__ == type(target).__name__
), "invalid type : {:} vs {:}".format(base, target)
if type(base).__name__ == "ConvBNReLU":
copy_base(target, base)
elif type(base).__name__ == "ResNetBasicblock":
copy_basic(target, base)
else:
raise ValueError("unknown type name : {:}".format(type(base).__name__))

View File

@@ -3,16 +3,14 @@ import torch.nn as nn
def initialize_resnet(m):
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)

View File

@@ -7,161 +7,280 @@ from ..initialization import initialize_resnet
class ConvBNReLU(nn.Module):
def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu):
super(ConvBNReLU, self).__init__()
if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
else : self.avg = None
self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias)
if has_bn : self.bn = nn.BatchNorm2d(nOut)
else : self.bn = None
if has_relu: self.relu = nn.ReLU(inplace=True)
else : self.relu = None
def __init__(
self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu
):
super(ConvBNReLU, self).__init__()
if has_avg:
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
else:
self.avg = None
self.conv = nn.Conv2d(
nIn,
nOut,
kernel_size=kernel,
stride=stride,
padding=padding,
dilation=1,
groups=1,
bias=bias,
)
if has_bn:
self.bn = nn.BatchNorm2d(nOut)
else:
self.bn = None
if has_relu:
self.relu = nn.ReLU(inplace=True)
else:
self.relu = None
def forward(self, inputs):
if self.avg : out = self.avg( inputs )
else : out = inputs
conv = self.conv( out )
if self.bn : out = self.bn( conv )
else : out = conv
if self.relu: out = self.relu( out )
else : out = out
def forward(self, inputs):
if self.avg:
out = self.avg(inputs)
else:
out = inputs
conv = self.conv(out)
if self.bn:
out = self.bn(conv)
else:
out = conv
if self.relu:
out = self.relu(out)
else:
out = out
return out
return out
class ResNetBasicblock(nn.Module):
num_conv = 2
expansion = 1
def __init__(self, iCs, stride):
super(ResNetBasicblock, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
assert isinstance(iCs, tuple) or isinstance(iCs, list), 'invalid type of iCs : {:}'.format( iCs )
assert len(iCs) == 3,'invalid lengths of iCs : {:}'.format(iCs)
self.conv_a = ConvBNReLU(iCs[0], iCs[1], 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_b = ConvBNReLU(iCs[1], iCs[2], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False)
residual_in = iCs[0]
if stride == 2:
self.downsample = ConvBNReLU(iCs[0], iCs[2], 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
residual_in = iCs[2]
elif iCs[0] != iCs[2]:
self.downsample = ConvBNReLU(iCs[0], iCs[2], 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
else:
self.downsample = None
#self.out_dim = max(residual_in, iCs[2])
self.out_dim = iCs[2]
num_conv = 2
expansion = 1
def forward(self, inputs):
basicblock = self.conv_a(inputs)
basicblock = self.conv_b(basicblock)
def __init__(self, iCs, stride):
super(ResNetBasicblock, self).__init__()
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
assert isinstance(iCs, tuple) or isinstance(
iCs, list
), "invalid type of iCs : {:}".format(iCs)
assert len(iCs) == 3, "invalid lengths of iCs : {:}".format(iCs)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = residual + basicblock
return F.relu(out, inplace=True)
self.conv_a = ConvBNReLU(
iCs[0],
iCs[1],
3,
stride,
1,
False,
has_avg=False,
has_bn=True,
has_relu=True,
)
self.conv_b = ConvBNReLU(
iCs[1], iCs[2], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False
)
residual_in = iCs[0]
if stride == 2:
self.downsample = ConvBNReLU(
iCs[0],
iCs[2],
1,
1,
0,
False,
has_avg=True,
has_bn=False,
has_relu=False,
)
residual_in = iCs[2]
elif iCs[0] != iCs[2]:
self.downsample = ConvBNReLU(
iCs[0],
iCs[2],
1,
1,
0,
False,
has_avg=False,
has_bn=True,
has_relu=False,
)
else:
self.downsample = None
# self.out_dim = max(residual_in, iCs[2])
self.out_dim = iCs[2]
def forward(self, inputs):
basicblock = self.conv_a(inputs)
basicblock = self.conv_b(basicblock)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = residual + basicblock
return F.relu(out, inplace=True)
class ResNetBottleneck(nn.Module):
expansion = 4
num_conv = 3
def __init__(self, iCs, stride):
super(ResNetBottleneck, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
assert isinstance(iCs, tuple) or isinstance(iCs, list), 'invalid type of iCs : {:}'.format( iCs )
assert len(iCs) == 4,'invalid lengths of iCs : {:}'.format(iCs)
self.conv_1x1 = ConvBNReLU(iCs[0], iCs[1], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_3x3 = ConvBNReLU(iCs[1], iCs[2], 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_1x4 = ConvBNReLU(iCs[2], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False)
residual_in = iCs[0]
if stride == 2:
self.downsample = ConvBNReLU(iCs[0], iCs[3], 1, 1, 0, False, has_avg=True , has_bn=False, has_relu=False)
residual_in = iCs[3]
elif iCs[0] != iCs[3]:
self.downsample = ConvBNReLU(iCs[0], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=False, has_relu=False)
residual_in = iCs[3]
else:
self.downsample = None
#self.out_dim = max(residual_in, iCs[3])
self.out_dim = iCs[3]
expansion = 4
num_conv = 3
def forward(self, inputs):
def __init__(self, iCs, stride):
super(ResNetBottleneck, self).__init__()
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
assert isinstance(iCs, tuple) or isinstance(
iCs, list
), "invalid type of iCs : {:}".format(iCs)
assert len(iCs) == 4, "invalid lengths of iCs : {:}".format(iCs)
self.conv_1x1 = ConvBNReLU(
iCs[0], iCs[1], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True
)
self.conv_3x3 = ConvBNReLU(
iCs[1],
iCs[2],
3,
stride,
1,
False,
has_avg=False,
has_bn=True,
has_relu=True,
)
self.conv_1x4 = ConvBNReLU(
iCs[2], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False
)
residual_in = iCs[0]
if stride == 2:
self.downsample = ConvBNReLU(
iCs[0],
iCs[3],
1,
1,
0,
False,
has_avg=True,
has_bn=False,
has_relu=False,
)
residual_in = iCs[3]
elif iCs[0] != iCs[3]:
self.downsample = ConvBNReLU(
iCs[0],
iCs[3],
1,
1,
0,
False,
has_avg=False,
has_bn=False,
has_relu=False,
)
residual_in = iCs[3]
else:
self.downsample = None
# self.out_dim = max(residual_in, iCs[3])
self.out_dim = iCs[3]
bottleneck = self.conv_1x1(inputs)
bottleneck = self.conv_3x3(bottleneck)
bottleneck = self.conv_1x4(bottleneck)
def forward(self, inputs):
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = residual + bottleneck
return F.relu(out, inplace=True)
bottleneck = self.conv_1x1(inputs)
bottleneck = self.conv_3x3(bottleneck)
bottleneck = self.conv_1x4(bottleneck)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = residual + bottleneck
return F.relu(out, inplace=True)
class InferCifarResNet(nn.Module):
def __init__(
self, block_name, depth, xblocks, xchannels, num_classes, zero_init_residual
):
super(InferCifarResNet, self).__init__()
def __init__(self, block_name, depth, xblocks, xchannels, num_classes, zero_init_residual):
super(InferCifarResNet, self).__init__()
# Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
if block_name == "ResNetBasicblock":
block = ResNetBasicblock
assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110"
layer_blocks = (depth - 2) // 6
elif block_name == "ResNetBottleneck":
block = ResNetBottleneck
assert (depth - 2) % 9 == 0, "depth should be one of 164"
layer_blocks = (depth - 2) // 9
else:
raise ValueError("invalid block : {:}".format(block_name))
assert len(xblocks) == 3, "invalid xblocks : {:}".format(xblocks)
#Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
if block_name == 'ResNetBasicblock':
block = ResNetBasicblock
assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110'
layer_blocks = (depth - 2) // 6
elif block_name == 'ResNetBottleneck':
block = ResNetBottleneck
assert (depth - 2) % 9 == 0, 'depth should be one of 164'
layer_blocks = (depth - 2) // 9
else:
raise ValueError('invalid block : {:}'.format(block_name))
assert len(xblocks) == 3, 'invalid xblocks : {:}'.format(xblocks)
self.message = (
"InferWidthCifarResNet : Depth : {:} , Layers for each block : {:}".format(
depth, layer_blocks
)
)
self.num_classes = num_classes
self.xchannels = xchannels
self.layers = nn.ModuleList(
[
ConvBNReLU(
xchannels[0],
xchannels[1],
3,
1,
1,
False,
has_avg=False,
has_bn=True,
has_relu=True,
)
]
)
last_channel_idx = 1
for stage in range(3):
for iL in range(layer_blocks):
num_conv = block.num_conv
iCs = self.xchannels[last_channel_idx : last_channel_idx + num_conv + 1]
stride = 2 if stage > 0 and iL == 0 else 1
module = block(iCs, stride)
last_channel_idx += num_conv
self.xchannels[last_channel_idx] = module.out_dim
self.layers.append(module)
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iCs={:}, oC={:3d}, stride={:}".format(
stage,
iL,
layer_blocks,
len(self.layers) - 1,
iCs,
module.out_dim,
stride,
)
if iL + 1 == xblocks[stage]: # reach the maximum depth
out_channel = module.out_dim
for iiL in range(iL + 1, layer_blocks):
last_channel_idx += num_conv
self.xchannels[last_channel_idx] = module.out_dim
break
self.message = 'InferWidthCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks)
self.num_classes = num_classes
self.xchannels = xchannels
self.layers = nn.ModuleList( [ ConvBNReLU(xchannels[0], xchannels[1], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] )
last_channel_idx = 1
for stage in range(3):
for iL in range(layer_blocks):
num_conv = block.num_conv
iCs = self.xchannels[last_channel_idx:last_channel_idx+num_conv+1]
stride = 2 if stage > 0 and iL == 0 else 1
module = block(iCs, stride)
last_channel_idx += num_conv
self.xchannels[last_channel_idx] = module.out_dim
self.layers.append ( module )
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iCs={:}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iCs, module.out_dim, stride)
if iL + 1 == xblocks[stage]: # reach the maximum depth
out_channel = module.out_dim
for iiL in range(iL+1, layer_blocks):
last_channel_idx += num_conv
self.xchannels[last_channel_idx] = module.out_dim
break
self.avgpool = nn.AvgPool2d(8)
self.classifier = nn.Linear(self.xchannels[-1], num_classes)
self.apply(initialize_resnet)
if zero_init_residual:
for m in self.modules():
if isinstance(m, ResNetBasicblock):
nn.init.constant_(m.conv_b.bn.weight, 0)
elif isinstance(m, ResNetBottleneck):
nn.init.constant_(m.conv_1x4.bn.weight, 0)
self.avgpool = nn.AvgPool2d(8)
self.classifier = nn.Linear(self.xchannels[-1], num_classes)
def get_message(self):
return self.message
self.apply(initialize_resnet)
if zero_init_residual:
for m in self.modules():
if isinstance(m, ResNetBasicblock):
nn.init.constant_(m.conv_b.bn.weight, 0)
elif isinstance(m, ResNetBottleneck):
nn.init.constant_(m.conv_1x4.bn.weight, 0)
def forward(self, inputs):
x = inputs
for i, layer in enumerate(self.layers):
x = layer( x )
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = self.classifier(features)
return features, logits
def get_message(self):
return self.message
def forward(self, inputs):
x = inputs
for i, layer in enumerate(self.layers):
x = layer(x)
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = self.classifier(features)
return features, logits

View File

@@ -7,144 +7,257 @@ from ..initialization import initialize_resnet
class ConvBNReLU(nn.Module):
def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu):
super(ConvBNReLU, self).__init__()
if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
else : self.avg = None
self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias)
if has_bn : self.bn = nn.BatchNorm2d(nOut)
else : self.bn = None
if has_relu: self.relu = nn.ReLU(inplace=True)
else : self.relu = None
def __init__(
self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu
):
super(ConvBNReLU, self).__init__()
if has_avg:
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
else:
self.avg = None
self.conv = nn.Conv2d(
nIn,
nOut,
kernel_size=kernel,
stride=stride,
padding=padding,
dilation=1,
groups=1,
bias=bias,
)
if has_bn:
self.bn = nn.BatchNorm2d(nOut)
else:
self.bn = None
if has_relu:
self.relu = nn.ReLU(inplace=True)
else:
self.relu = None
def forward(self, inputs):
if self.avg : out = self.avg( inputs )
else : out = inputs
conv = self.conv( out )
if self.bn : out = self.bn( conv )
else : out = conv
if self.relu: out = self.relu( out )
else : out = out
def forward(self, inputs):
if self.avg:
out = self.avg(inputs)
else:
out = inputs
conv = self.conv(out)
if self.bn:
out = self.bn(conv)
else:
out = conv
if self.relu:
out = self.relu(out)
else:
out = out
return out
return out
class ResNetBasicblock(nn.Module):
num_conv = 2
expansion = 1
def __init__(self, inplanes, planes, stride):
super(ResNetBasicblock, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_b = ConvBNReLU( planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False)
if stride == 2:
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
elif inplanes != planes:
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
else:
self.downsample = None
self.out_dim = planes
num_conv = 2
expansion = 1
def forward(self, inputs):
basicblock = self.conv_a(inputs)
basicblock = self.conv_b(basicblock)
def __init__(self, inplanes, planes, stride):
super(ResNetBasicblock, self).__init__()
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = residual + basicblock
return F.relu(out, inplace=True)
self.conv_a = ConvBNReLU(
inplanes,
planes,
3,
stride,
1,
False,
has_avg=False,
has_bn=True,
has_relu=True,
)
self.conv_b = ConvBNReLU(
planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False
)
if stride == 2:
self.downsample = ConvBNReLU(
inplanes,
planes,
1,
1,
0,
False,
has_avg=True,
has_bn=False,
has_relu=False,
)
elif inplanes != planes:
self.downsample = ConvBNReLU(
inplanes,
planes,
1,
1,
0,
False,
has_avg=False,
has_bn=True,
has_relu=False,
)
else:
self.downsample = None
self.out_dim = planes
def forward(self, inputs):
basicblock = self.conv_a(inputs)
basicblock = self.conv_b(basicblock)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = residual + basicblock
return F.relu(out, inplace=True)
class ResNetBottleneck(nn.Module):
expansion = 4
num_conv = 3
def __init__(self, inplanes, planes, stride):
super(ResNetBottleneck, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
self.conv_1x1 = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_3x3 = ConvBNReLU( planes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False)
if stride == 2:
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=True , has_bn=False, has_relu=False)
elif inplanes != planes*self.expansion:
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=False, has_relu=False)
else:
self.downsample = None
self.out_dim = planes*self.expansion
expansion = 4
num_conv = 3
def forward(self, inputs):
def __init__(self, inplanes, planes, stride):
super(ResNetBottleneck, self).__init__()
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
self.conv_1x1 = ConvBNReLU(
inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True
)
self.conv_3x3 = ConvBNReLU(
planes,
planes,
3,
stride,
1,
False,
has_avg=False,
has_bn=True,
has_relu=True,
)
self.conv_1x4 = ConvBNReLU(
planes,
planes * self.expansion,
1,
1,
0,
False,
has_avg=False,
has_bn=True,
has_relu=False,
)
if stride == 2:
self.downsample = ConvBNReLU(
inplanes,
planes * self.expansion,
1,
1,
0,
False,
has_avg=True,
has_bn=False,
has_relu=False,
)
elif inplanes != planes * self.expansion:
self.downsample = ConvBNReLU(
inplanes,
planes * self.expansion,
1,
1,
0,
False,
has_avg=False,
has_bn=False,
has_relu=False,
)
else:
self.downsample = None
self.out_dim = planes * self.expansion
bottleneck = self.conv_1x1(inputs)
bottleneck = self.conv_3x3(bottleneck)
bottleneck = self.conv_1x4(bottleneck)
def forward(self, inputs):
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = residual + bottleneck
return F.relu(out, inplace=True)
bottleneck = self.conv_1x1(inputs)
bottleneck = self.conv_3x3(bottleneck)
bottleneck = self.conv_1x4(bottleneck)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = residual + bottleneck
return F.relu(out, inplace=True)
class InferDepthCifarResNet(nn.Module):
def __init__(self, block_name, depth, xblocks, num_classes, zero_init_residual):
super(InferDepthCifarResNet, self).__init__()
def __init__(self, block_name, depth, xblocks, num_classes, zero_init_residual):
super(InferDepthCifarResNet, self).__init__()
# Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
if block_name == "ResNetBasicblock":
block = ResNetBasicblock
assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110"
layer_blocks = (depth - 2) // 6
elif block_name == "ResNetBottleneck":
block = ResNetBottleneck
assert (depth - 2) % 9 == 0, "depth should be one of 164"
layer_blocks = (depth - 2) // 9
else:
raise ValueError("invalid block : {:}".format(block_name))
assert len(xblocks) == 3, "invalid xblocks : {:}".format(xblocks)
#Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
if block_name == 'ResNetBasicblock':
block = ResNetBasicblock
assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110'
layer_blocks = (depth - 2) // 6
elif block_name == 'ResNetBottleneck':
block = ResNetBottleneck
assert (depth - 2) % 9 == 0, 'depth should be one of 164'
layer_blocks = (depth - 2) // 9
else:
raise ValueError('invalid block : {:}'.format(block_name))
assert len(xblocks) == 3, 'invalid xblocks : {:}'.format(xblocks)
self.message = (
"InferWidthCifarResNet : Depth : {:} , Layers for each block : {:}".format(
depth, layer_blocks
)
)
self.num_classes = num_classes
self.layers = nn.ModuleList(
[
ConvBNReLU(
3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True
)
]
)
self.channels = [16]
for stage in range(3):
for iL in range(layer_blocks):
iC = self.channels[-1]
planes = 16 * (2 ** stage)
stride = 2 if stage > 0 and iL == 0 else 1
module = block(iC, planes, stride)
self.channels.append(module.out_dim)
self.layers.append(module)
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:}, oC={:3d}, stride={:}".format(
stage,
iL,
layer_blocks,
len(self.layers) - 1,
planes,
module.out_dim,
stride,
)
if iL + 1 == xblocks[stage]: # reach the maximum depth
break
self.message = 'InferWidthCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks)
self.num_classes = num_classes
self.layers = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] )
self.channels = [16]
for stage in range(3):
for iL in range(layer_blocks):
iC = self.channels[-1]
planes = 16 * (2**stage)
stride = 2 if stage > 0 and iL == 0 else 1
module = block(iC, planes, stride)
self.channels.append( module.out_dim )
self.layers.append ( module )
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, planes, module.out_dim, stride)
if iL + 1 == xblocks[stage]: # reach the maximum depth
break
self.avgpool = nn.AvgPool2d(8)
self.classifier = nn.Linear(self.channels[-1], num_classes)
self.apply(initialize_resnet)
if zero_init_residual:
for m in self.modules():
if isinstance(m, ResNetBasicblock):
nn.init.constant_(m.conv_b.bn.weight, 0)
elif isinstance(m, ResNetBottleneck):
nn.init.constant_(m.conv_1x4.bn.weight, 0)
self.avgpool = nn.AvgPool2d(8)
self.classifier = nn.Linear(self.channels[-1], num_classes)
def get_message(self):
return self.message
self.apply(initialize_resnet)
if zero_init_residual:
for m in self.modules():
if isinstance(m, ResNetBasicblock):
nn.init.constant_(m.conv_b.bn.weight, 0)
elif isinstance(m, ResNetBottleneck):
nn.init.constant_(m.conv_1x4.bn.weight, 0)
def forward(self, inputs):
x = inputs
for i, layer in enumerate(self.layers):
x = layer( x )
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = self.classifier(features)
return features, logits
def get_message(self):
return self.message
def forward(self, inputs):
x = inputs
for i, layer in enumerate(self.layers):
x = layer(x)
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = self.classifier(features)
return features, logits

View File

@@ -7,154 +7,271 @@ from ..initialization import initialize_resnet
class ConvBNReLU(nn.Module):
def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu):
super(ConvBNReLU, self).__init__()
if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
else : self.avg = None
self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias)
if has_bn : self.bn = nn.BatchNorm2d(nOut)
else : self.bn = None
if has_relu: self.relu = nn.ReLU(inplace=True)
else : self.relu = None
def __init__(
self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu
):
super(ConvBNReLU, self).__init__()
if has_avg:
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
else:
self.avg = None
self.conv = nn.Conv2d(
nIn,
nOut,
kernel_size=kernel,
stride=stride,
padding=padding,
dilation=1,
groups=1,
bias=bias,
)
if has_bn:
self.bn = nn.BatchNorm2d(nOut)
else:
self.bn = None
if has_relu:
self.relu = nn.ReLU(inplace=True)
else:
self.relu = None
def forward(self, inputs):
if self.avg : out = self.avg( inputs )
else : out = inputs
conv = self.conv( out )
if self.bn : out = self.bn( conv )
else : out = conv
if self.relu: out = self.relu( out )
else : out = out
def forward(self, inputs):
if self.avg:
out = self.avg(inputs)
else:
out = inputs
conv = self.conv(out)
if self.bn:
out = self.bn(conv)
else:
out = conv
if self.relu:
out = self.relu(out)
else:
out = out
return out
return out
class ResNetBasicblock(nn.Module):
num_conv = 2
expansion = 1
def __init__(self, iCs, stride):
super(ResNetBasicblock, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
assert isinstance(iCs, tuple) or isinstance(iCs, list), 'invalid type of iCs : {:}'.format( iCs )
assert len(iCs) == 3,'invalid lengths of iCs : {:}'.format(iCs)
self.conv_a = ConvBNReLU(iCs[0], iCs[1], 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_b = ConvBNReLU(iCs[1], iCs[2], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False)
residual_in = iCs[0]
if stride == 2:
self.downsample = ConvBNReLU(iCs[0], iCs[2], 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
residual_in = iCs[2]
elif iCs[0] != iCs[2]:
self.downsample = ConvBNReLU(iCs[0], iCs[2], 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
else:
self.downsample = None
#self.out_dim = max(residual_in, iCs[2])
self.out_dim = iCs[2]
num_conv = 2
expansion = 1
def forward(self, inputs):
basicblock = self.conv_a(inputs)
basicblock = self.conv_b(basicblock)
def __init__(self, iCs, stride):
super(ResNetBasicblock, self).__init__()
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
assert isinstance(iCs, tuple) or isinstance(
iCs, list
), "invalid type of iCs : {:}".format(iCs)
assert len(iCs) == 3, "invalid lengths of iCs : {:}".format(iCs)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = residual + basicblock
return F.relu(out, inplace=True)
self.conv_a = ConvBNReLU(
iCs[0],
iCs[1],
3,
stride,
1,
False,
has_avg=False,
has_bn=True,
has_relu=True,
)
self.conv_b = ConvBNReLU(
iCs[1], iCs[2], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False
)
residual_in = iCs[0]
if stride == 2:
self.downsample = ConvBNReLU(
iCs[0],
iCs[2],
1,
1,
0,
False,
has_avg=True,
has_bn=False,
has_relu=False,
)
residual_in = iCs[2]
elif iCs[0] != iCs[2]:
self.downsample = ConvBNReLU(
iCs[0],
iCs[2],
1,
1,
0,
False,
has_avg=False,
has_bn=True,
has_relu=False,
)
else:
self.downsample = None
# self.out_dim = max(residual_in, iCs[2])
self.out_dim = iCs[2]
def forward(self, inputs):
basicblock = self.conv_a(inputs)
basicblock = self.conv_b(basicblock)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = residual + basicblock
return F.relu(out, inplace=True)
class ResNetBottleneck(nn.Module):
expansion = 4
num_conv = 3
def __init__(self, iCs, stride):
super(ResNetBottleneck, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
assert isinstance(iCs, tuple) or isinstance(iCs, list), 'invalid type of iCs : {:}'.format( iCs )
assert len(iCs) == 4,'invalid lengths of iCs : {:}'.format(iCs)
self.conv_1x1 = ConvBNReLU(iCs[0], iCs[1], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_3x3 = ConvBNReLU(iCs[1], iCs[2], 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_1x4 = ConvBNReLU(iCs[2], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False)
residual_in = iCs[0]
if stride == 2:
self.downsample = ConvBNReLU(iCs[0], iCs[3], 1, 1, 0, False, has_avg=True , has_bn=False, has_relu=False)
residual_in = iCs[3]
elif iCs[0] != iCs[3]:
self.downsample = ConvBNReLU(iCs[0], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=False, has_relu=False)
residual_in = iCs[3]
else:
self.downsample = None
#self.out_dim = max(residual_in, iCs[3])
self.out_dim = iCs[3]
expansion = 4
num_conv = 3
def forward(self, inputs):
def __init__(self, iCs, stride):
super(ResNetBottleneck, self).__init__()
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
assert isinstance(iCs, tuple) or isinstance(
iCs, list
), "invalid type of iCs : {:}".format(iCs)
assert len(iCs) == 4, "invalid lengths of iCs : {:}".format(iCs)
self.conv_1x1 = ConvBNReLU(
iCs[0], iCs[1], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True
)
self.conv_3x3 = ConvBNReLU(
iCs[1],
iCs[2],
3,
stride,
1,
False,
has_avg=False,
has_bn=True,
has_relu=True,
)
self.conv_1x4 = ConvBNReLU(
iCs[2], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False
)
residual_in = iCs[0]
if stride == 2:
self.downsample = ConvBNReLU(
iCs[0],
iCs[3],
1,
1,
0,
False,
has_avg=True,
has_bn=False,
has_relu=False,
)
residual_in = iCs[3]
elif iCs[0] != iCs[3]:
self.downsample = ConvBNReLU(
iCs[0],
iCs[3],
1,
1,
0,
False,
has_avg=False,
has_bn=False,
has_relu=False,
)
residual_in = iCs[3]
else:
self.downsample = None
# self.out_dim = max(residual_in, iCs[3])
self.out_dim = iCs[3]
bottleneck = self.conv_1x1(inputs)
bottleneck = self.conv_3x3(bottleneck)
bottleneck = self.conv_1x4(bottleneck)
def forward(self, inputs):
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = residual + bottleneck
return F.relu(out, inplace=True)
bottleneck = self.conv_1x1(inputs)
bottleneck = self.conv_3x3(bottleneck)
bottleneck = self.conv_1x4(bottleneck)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = residual + bottleneck
return F.relu(out, inplace=True)
class InferWidthCifarResNet(nn.Module):
def __init__(self, block_name, depth, xchannels, num_classes, zero_init_residual):
super(InferWidthCifarResNet, self).__init__()
def __init__(self, block_name, depth, xchannels, num_classes, zero_init_residual):
super(InferWidthCifarResNet, self).__init__()
# Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
if block_name == "ResNetBasicblock":
block = ResNetBasicblock
assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110"
layer_blocks = (depth - 2) // 6
elif block_name == "ResNetBottleneck":
block = ResNetBottleneck
assert (depth - 2) % 9 == 0, "depth should be one of 164"
layer_blocks = (depth - 2) // 9
else:
raise ValueError("invalid block : {:}".format(block_name))
#Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
if block_name == 'ResNetBasicblock':
block = ResNetBasicblock
assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110'
layer_blocks = (depth - 2) // 6
elif block_name == 'ResNetBottleneck':
block = ResNetBottleneck
assert (depth - 2) % 9 == 0, 'depth should be one of 164'
layer_blocks = (depth - 2) // 9
else:
raise ValueError('invalid block : {:}'.format(block_name))
self.message = (
"InferWidthCifarResNet : Depth : {:} , Layers for each block : {:}".format(
depth, layer_blocks
)
)
self.num_classes = num_classes
self.xchannels = xchannels
self.layers = nn.ModuleList(
[
ConvBNReLU(
xchannels[0],
xchannels[1],
3,
1,
1,
False,
has_avg=False,
has_bn=True,
has_relu=True,
)
]
)
last_channel_idx = 1
for stage in range(3):
for iL in range(layer_blocks):
num_conv = block.num_conv
iCs = self.xchannels[last_channel_idx : last_channel_idx + num_conv + 1]
stride = 2 if stage > 0 and iL == 0 else 1
module = block(iCs, stride)
last_channel_idx += num_conv
self.xchannels[last_channel_idx] = module.out_dim
self.layers.append(module)
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iCs={:}, oC={:3d}, stride={:}".format(
stage,
iL,
layer_blocks,
len(self.layers) - 1,
iCs,
module.out_dim,
stride,
)
self.message = 'InferWidthCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks)
self.num_classes = num_classes
self.xchannels = xchannels
self.layers = nn.ModuleList( [ ConvBNReLU(xchannels[0], xchannels[1], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] )
last_channel_idx = 1
for stage in range(3):
for iL in range(layer_blocks):
num_conv = block.num_conv
iCs = self.xchannels[last_channel_idx:last_channel_idx+num_conv+1]
stride = 2 if stage > 0 and iL == 0 else 1
module = block(iCs, stride)
last_channel_idx += num_conv
self.xchannels[last_channel_idx] = module.out_dim
self.layers.append ( module )
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iCs={:}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iCs, module.out_dim, stride)
self.avgpool = nn.AvgPool2d(8)
self.classifier = nn.Linear(self.xchannels[-1], num_classes)
self.apply(initialize_resnet)
if zero_init_residual:
for m in self.modules():
if isinstance(m, ResNetBasicblock):
nn.init.constant_(m.conv_b.bn.weight, 0)
elif isinstance(m, ResNetBottleneck):
nn.init.constant_(m.conv_1x4.bn.weight, 0)
self.avgpool = nn.AvgPool2d(8)
self.classifier = nn.Linear(self.xchannels[-1], num_classes)
def get_message(self):
return self.message
self.apply(initialize_resnet)
if zero_init_residual:
for m in self.modules():
if isinstance(m, ResNetBasicblock):
nn.init.constant_(m.conv_b.bn.weight, 0)
elif isinstance(m, ResNetBottleneck):
nn.init.constant_(m.conv_1x4.bn.weight, 0)
def forward(self, inputs):
x = inputs
for i, layer in enumerate(self.layers):
x = layer( x )
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = self.classifier(features)
return features, logits
def get_message(self):
return self.message
def forward(self, inputs):
x = inputs
for i, layer in enumerate(self.layers):
x = layer(x)
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = self.classifier(features)
return features, logits

View File

@@ -7,164 +7,318 @@ from ..initialization import initialize_resnet
class ConvBNReLU(nn.Module):
num_conv = 1
def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu):
super(ConvBNReLU, self).__init__()
if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
else : self.avg = None
self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias)
if has_bn : self.bn = nn.BatchNorm2d(nOut)
else : self.bn = None
if has_relu: self.relu = nn.ReLU(inplace=True)
else : self.relu = None
def forward(self, inputs):
if self.avg : out = self.avg( inputs )
else : out = inputs
conv = self.conv( out )
if self.bn : out = self.bn( conv )
else : out = conv
if self.relu: out = self.relu( out )
else : out = out
num_conv = 1
return out
def __init__(
self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu
):
super(ConvBNReLU, self).__init__()
if has_avg:
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
else:
self.avg = None
self.conv = nn.Conv2d(
nIn,
nOut,
kernel_size=kernel,
stride=stride,
padding=padding,
dilation=1,
groups=1,
bias=bias,
)
if has_bn:
self.bn = nn.BatchNorm2d(nOut)
else:
self.bn = None
if has_relu:
self.relu = nn.ReLU(inplace=True)
else:
self.relu = None
def forward(self, inputs):
if self.avg:
out = self.avg(inputs)
else:
out = inputs
conv = self.conv(out)
if self.bn:
out = self.bn(conv)
else:
out = conv
if self.relu:
out = self.relu(out)
else:
out = out
return out
class ResNetBasicblock(nn.Module):
num_conv = 2
expansion = 1
def __init__(self, iCs, stride):
super(ResNetBasicblock, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
assert isinstance(iCs, tuple) or isinstance(iCs, list), 'invalid type of iCs : {:}'.format( iCs )
assert len(iCs) == 3,'invalid lengths of iCs : {:}'.format(iCs)
self.conv_a = ConvBNReLU(iCs[0], iCs[1], 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_b = ConvBNReLU(iCs[1], iCs[2], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False)
residual_in = iCs[0]
if stride == 2:
self.downsample = ConvBNReLU(iCs[0], iCs[2], 1, 1, 0, False, has_avg=True, has_bn=True, has_relu=False)
residual_in = iCs[2]
elif iCs[0] != iCs[2]:
self.downsample = ConvBNReLU(iCs[0], iCs[2], 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
else:
self.downsample = None
#self.out_dim = max(residual_in, iCs[2])
self.out_dim = iCs[2]
num_conv = 2
expansion = 1
def forward(self, inputs):
basicblock = self.conv_a(inputs)
basicblock = self.conv_b(basicblock)
def __init__(self, iCs, stride):
super(ResNetBasicblock, self).__init__()
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
assert isinstance(iCs, tuple) or isinstance(
iCs, list
), "invalid type of iCs : {:}".format(iCs)
assert len(iCs) == 3, "invalid lengths of iCs : {:}".format(iCs)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = residual + basicblock
return F.relu(out, inplace=True)
self.conv_a = ConvBNReLU(
iCs[0],
iCs[1],
3,
stride,
1,
False,
has_avg=False,
has_bn=True,
has_relu=True,
)
self.conv_b = ConvBNReLU(
iCs[1], iCs[2], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False
)
residual_in = iCs[0]
if stride == 2:
self.downsample = ConvBNReLU(
iCs[0],
iCs[2],
1,
1,
0,
False,
has_avg=True,
has_bn=True,
has_relu=False,
)
residual_in = iCs[2]
elif iCs[0] != iCs[2]:
self.downsample = ConvBNReLU(
iCs[0],
iCs[2],
1,
1,
0,
False,
has_avg=False,
has_bn=True,
has_relu=False,
)
else:
self.downsample = None
# self.out_dim = max(residual_in, iCs[2])
self.out_dim = iCs[2]
def forward(self, inputs):
basicblock = self.conv_a(inputs)
basicblock = self.conv_b(basicblock)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = residual + basicblock
return F.relu(out, inplace=True)
class ResNetBottleneck(nn.Module):
expansion = 4
num_conv = 3
def __init__(self, iCs, stride):
super(ResNetBottleneck, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
assert isinstance(iCs, tuple) or isinstance(iCs, list), 'invalid type of iCs : {:}'.format( iCs )
assert len(iCs) == 4,'invalid lengths of iCs : {:}'.format(iCs)
self.conv_1x1 = ConvBNReLU(iCs[0], iCs[1], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_3x3 = ConvBNReLU(iCs[1], iCs[2], 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_1x4 = ConvBNReLU(iCs[2], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False)
residual_in = iCs[0]
if stride == 2:
self.downsample = ConvBNReLU(iCs[0], iCs[3], 1, 1, 0, False, has_avg=True , has_bn=True, has_relu=False)
residual_in = iCs[3]
elif iCs[0] != iCs[3]:
self.downsample = ConvBNReLU(iCs[0], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False)
residual_in = iCs[3]
else:
self.downsample = None
#self.out_dim = max(residual_in, iCs[3])
self.out_dim = iCs[3]
expansion = 4
num_conv = 3
def forward(self, inputs):
def __init__(self, iCs, stride):
super(ResNetBottleneck, self).__init__()
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
assert isinstance(iCs, tuple) or isinstance(
iCs, list
), "invalid type of iCs : {:}".format(iCs)
assert len(iCs) == 4, "invalid lengths of iCs : {:}".format(iCs)
self.conv_1x1 = ConvBNReLU(
iCs[0], iCs[1], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True
)
self.conv_3x3 = ConvBNReLU(
iCs[1],
iCs[2],
3,
stride,
1,
False,
has_avg=False,
has_bn=True,
has_relu=True,
)
self.conv_1x4 = ConvBNReLU(
iCs[2], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False
)
residual_in = iCs[0]
if stride == 2:
self.downsample = ConvBNReLU(
iCs[0],
iCs[3],
1,
1,
0,
False,
has_avg=True,
has_bn=True,
has_relu=False,
)
residual_in = iCs[3]
elif iCs[0] != iCs[3]:
self.downsample = ConvBNReLU(
iCs[0],
iCs[3],
1,
1,
0,
False,
has_avg=False,
has_bn=True,
has_relu=False,
)
residual_in = iCs[3]
else:
self.downsample = None
# self.out_dim = max(residual_in, iCs[3])
self.out_dim = iCs[3]
bottleneck = self.conv_1x1(inputs)
bottleneck = self.conv_3x3(bottleneck)
bottleneck = self.conv_1x4(bottleneck)
def forward(self, inputs):
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = residual + bottleneck
return F.relu(out, inplace=True)
bottleneck = self.conv_1x1(inputs)
bottleneck = self.conv_3x3(bottleneck)
bottleneck = self.conv_1x4(bottleneck)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = residual + bottleneck
return F.relu(out, inplace=True)
class InferImagenetResNet(nn.Module):
def __init__(
self,
block_name,
layers,
xblocks,
xchannels,
deep_stem,
num_classes,
zero_init_residual,
):
super(InferImagenetResNet, self).__init__()
def __init__(self, block_name, layers, xblocks, xchannels, deep_stem, num_classes, zero_init_residual):
super(InferImagenetResNet, self).__init__()
# Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
if block_name == "BasicBlock":
block = ResNetBasicblock
elif block_name == "Bottleneck":
block = ResNetBottleneck
else:
raise ValueError("invalid block : {:}".format(block_name))
assert len(xblocks) == len(
layers
), "invalid layers : {:} vs xblocks : {:}".format(layers, xblocks)
#Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
if block_name == 'BasicBlock':
block = ResNetBasicblock
elif block_name == 'Bottleneck':
block = ResNetBottleneck
else:
raise ValueError('invalid block : {:}'.format(block_name))
assert len(xblocks) == len(layers), 'invalid layers : {:} vs xblocks : {:}'.format(layers, xblocks)
self.message = "InferImagenetResNet : Depth : {:} -> {:}, Layers for each block : {:}".format(
sum(layers) * block.num_conv, sum(xblocks) * block.num_conv, xblocks
)
self.num_classes = num_classes
self.xchannels = xchannels
if not deep_stem:
self.layers = nn.ModuleList(
[
ConvBNReLU(
xchannels[0],
xchannels[1],
7,
2,
3,
False,
has_avg=False,
has_bn=True,
has_relu=True,
)
]
)
last_channel_idx = 1
else:
self.layers = nn.ModuleList(
[
ConvBNReLU(
xchannels[0],
xchannels[1],
3,
2,
1,
False,
has_avg=False,
has_bn=True,
has_relu=True,
),
ConvBNReLU(
xchannels[1],
xchannels[2],
3,
1,
1,
False,
has_avg=False,
has_bn=True,
has_relu=True,
),
]
)
last_channel_idx = 2
self.layers.append(nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
for stage, layer_blocks in enumerate(layers):
for iL in range(layer_blocks):
num_conv = block.num_conv
iCs = self.xchannels[last_channel_idx : last_channel_idx + num_conv + 1]
stride = 2 if stage > 0 and iL == 0 else 1
module = block(iCs, stride)
last_channel_idx += num_conv
self.xchannels[last_channel_idx] = module.out_dim
self.layers.append(module)
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iCs={:}, oC={:3d}, stride={:}".format(
stage,
iL,
layer_blocks,
len(self.layers) - 1,
iCs,
module.out_dim,
stride,
)
if iL + 1 == xblocks[stage]: # reach the maximum depth
out_channel = module.out_dim
for iiL in range(iL + 1, layer_blocks):
last_channel_idx += num_conv
self.xchannels[last_channel_idx] = module.out_dim
break
assert last_channel_idx + 1 == len(self.xchannels), "{:} vs {:}".format(
last_channel_idx, len(self.xchannels)
)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.classifier = nn.Linear(self.xchannels[-1], num_classes)
self.message = 'InferImagenetResNet : Depth : {:} -> {:}, Layers for each block : {:}'.format(sum(layers)*block.num_conv, sum(xblocks)*block.num_conv, xblocks)
self.num_classes = num_classes
self.xchannels = xchannels
if not deep_stem:
self.layers = nn.ModuleList( [ ConvBNReLU(xchannels[0], xchannels[1], 7, 2, 3, False, has_avg=False, has_bn=True, has_relu=True) ] )
last_channel_idx = 1
else:
self.layers = nn.ModuleList( [ ConvBNReLU(xchannels[0], xchannels[1], 3, 2, 1, False, has_avg=False, has_bn=True, has_relu=True)
,ConvBNReLU(xchannels[1], xchannels[2], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] )
last_channel_idx = 2
self.layers.append( nn.MaxPool2d(kernel_size=3, stride=2, padding=1) )
for stage, layer_blocks in enumerate(layers):
for iL in range(layer_blocks):
num_conv = block.num_conv
iCs = self.xchannels[last_channel_idx:last_channel_idx+num_conv+1]
stride = 2 if stage > 0 and iL == 0 else 1
module = block(iCs, stride)
last_channel_idx += num_conv
self.xchannels[last_channel_idx] = module.out_dim
self.layers.append ( module )
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iCs={:}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iCs, module.out_dim, stride)
if iL + 1 == xblocks[stage]: # reach the maximum depth
out_channel = module.out_dim
for iiL in range(iL+1, layer_blocks):
last_channel_idx += num_conv
self.xchannels[last_channel_idx] = module.out_dim
break
assert last_channel_idx + 1 == len(self.xchannels), '{:} vs {:}'.format(last_channel_idx, len(self.xchannels))
self.avgpool = nn.AdaptiveAvgPool2d((1,1))
self.classifier = nn.Linear(self.xchannels[-1], num_classes)
self.apply(initialize_resnet)
if zero_init_residual:
for m in self.modules():
if isinstance(m, ResNetBasicblock):
nn.init.constant_(m.conv_b.bn.weight, 0)
elif isinstance(m, ResNetBottleneck):
nn.init.constant_(m.conv_1x4.bn.weight, 0)
self.apply(initialize_resnet)
if zero_init_residual:
for m in self.modules():
if isinstance(m, ResNetBasicblock):
nn.init.constant_(m.conv_b.bn.weight, 0)
elif isinstance(m, ResNetBottleneck):
nn.init.constant_(m.conv_1x4.bn.weight, 0)
def get_message(self):
return self.message
def get_message(self):
return self.message
def forward(self, inputs):
x = inputs
for i, layer in enumerate(self.layers):
x = layer( x )
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = self.classifier(features)
return features, logits
def forward(self, inputs):
x = inputs
for i, layer in enumerate(self.layers):
x = layer(x)
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = self.classifier(features)
return features, logits

View File

@@ -4,119 +4,171 @@
# MobileNetV2: Inverted Residuals and Linear Bottlenecks, CVPR 2018
from torch import nn
from ..initialization import initialize_resnet
from ..SharedUtils import parse_channel_info
from ..SharedUtils import parse_channel_info
class ConvBNReLU(nn.Module):
def __init__(self, in_planes, out_planes, kernel_size, stride, groups, has_bn=True, has_relu=True):
super(ConvBNReLU, self).__init__()
padding = (kernel_size - 1) // 2
self.conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False)
if has_bn: self.bn = nn.BatchNorm2d(out_planes)
else : self.bn = None
if has_relu: self.relu = nn.ReLU6(inplace=True)
else : self.relu = None
def forward(self, x):
out = self.conv( x )
if self.bn: out = self.bn ( out )
if self.relu: out = self.relu( out )
return out
def __init__(
self,
in_planes,
out_planes,
kernel_size,
stride,
groups,
has_bn=True,
has_relu=True,
):
super(ConvBNReLU, self).__init__()
padding = (kernel_size - 1) // 2
self.conv = nn.Conv2d(
in_planes,
out_planes,
kernel_size,
stride,
padding,
groups=groups,
bias=False,
)
if has_bn:
self.bn = nn.BatchNorm2d(out_planes)
else:
self.bn = None
if has_relu:
self.relu = nn.ReLU6(inplace=True)
else:
self.relu = None
def forward(self, x):
out = self.conv(x)
if self.bn:
out = self.bn(out)
if self.relu:
out = self.relu(out)
return out
class InvertedResidual(nn.Module):
def __init__(self, channels, stride, expand_ratio, additive):
super(InvertedResidual, self).__init__()
self.stride = stride
assert stride in [1, 2], 'invalid stride : {:}'.format(stride)
assert len(channels) in [2, 3], 'invalid channels : {:}'.format(channels)
def __init__(self, channels, stride, expand_ratio, additive):
super(InvertedResidual, self).__init__()
self.stride = stride
assert stride in [1, 2], "invalid stride : {:}".format(stride)
assert len(channels) in [2, 3], "invalid channels : {:}".format(channels)
if len(channels) == 2:
layers = []
else:
layers = [ConvBNReLU(channels[0], channels[1], 1, 1, 1)]
layers.extend([
# dw
ConvBNReLU(channels[-2], channels[-2], 3, stride, channels[-2]),
# pw-linear
ConvBNReLU(channels[-2], channels[-1], 1, 1, 1, True, False),
])
self.conv = nn.Sequential(*layers)
self.additive = additive
if self.additive and channels[0] != channels[-1]:
self.shortcut = ConvBNReLU(channels[0], channels[-1], 1, 1, 1, True, False)
else:
self.shortcut = None
self.out_dim = channels[-1]
if len(channels) == 2:
layers = []
else:
layers = [ConvBNReLU(channels[0], channels[1], 1, 1, 1)]
layers.extend(
[
# dw
ConvBNReLU(channels[-2], channels[-2], 3, stride, channels[-2]),
# pw-linear
ConvBNReLU(channels[-2], channels[-1], 1, 1, 1, True, False),
]
)
self.conv = nn.Sequential(*layers)
self.additive = additive
if self.additive and channels[0] != channels[-1]:
self.shortcut = ConvBNReLU(channels[0], channels[-1], 1, 1, 1, True, False)
else:
self.shortcut = None
self.out_dim = channels[-1]
def forward(self, x):
out = self.conv(x)
# if self.additive: return additive_func(out, x)
if self.shortcut: return out + self.shortcut(x)
else : return out
def forward(self, x):
out = self.conv(x)
# if self.additive: return additive_func(out, x)
if self.shortcut:
return out + self.shortcut(x)
else:
return out
class InferMobileNetV2(nn.Module):
def __init__(self, num_classes, xchannels, xblocks, dropout):
super(InferMobileNetV2, self).__init__()
block = InvertedResidual
inverted_residual_setting = [
# t, c, n, s
[1, 16 , 1, 1],
[6, 24 , 2, 2],
[6, 32 , 3, 2],
[6, 64 , 4, 2],
[6, 96 , 3, 1],
[6, 160, 3, 2],
[6, 320, 1, 1],
]
assert len(inverted_residual_setting) == len(xblocks), 'invalid number of layers : {:} vs {:}'.format(len(inverted_residual_setting), len(xblocks))
for block_num, ir_setting in zip(xblocks, inverted_residual_setting):
assert block_num <= ir_setting[2], '{:} vs {:}'.format(block_num, ir_setting)
xchannels = parse_channel_info(xchannels)
#for i, chs in enumerate(xchannels):
# if i > 0: assert chs[0] == xchannels[i-1][-1], 'Layer[{:}] is invalid {:} vs {:}'.format(i, xchannels[i-1], chs)
self.xchannels = xchannels
self.message = 'InferMobileNetV2 : xblocks={:}'.format(xblocks)
# building first layer
features = [ConvBNReLU(xchannels[0][0], xchannels[0][1], 3, 2, 1)]
last_channel_idx = 1
def __init__(self, num_classes, xchannels, xblocks, dropout):
super(InferMobileNetV2, self).__init__()
block = InvertedResidual
inverted_residual_setting = [
# t, c, n, s
[1, 16, 1, 1],
[6, 24, 2, 2],
[6, 32, 3, 2],
[6, 64, 4, 2],
[6, 96, 3, 1],
[6, 160, 3, 2],
[6, 320, 1, 1],
]
assert len(inverted_residual_setting) == len(
xblocks
), "invalid number of layers : {:} vs {:}".format(
len(inverted_residual_setting), len(xblocks)
)
for block_num, ir_setting in zip(xblocks, inverted_residual_setting):
assert block_num <= ir_setting[2], "{:} vs {:}".format(
block_num, ir_setting
)
xchannels = parse_channel_info(xchannels)
# for i, chs in enumerate(xchannels):
# if i > 0: assert chs[0] == xchannels[i-1][-1], 'Layer[{:}] is invalid {:} vs {:}'.format(i, xchannels[i-1], chs)
self.xchannels = xchannels
self.message = "InferMobileNetV2 : xblocks={:}".format(xblocks)
# building first layer
features = [ConvBNReLU(xchannels[0][0], xchannels[0][1], 3, 2, 1)]
last_channel_idx = 1
# building inverted residual blocks
for stage, (t, c, n, s) in enumerate(inverted_residual_setting):
for i in range(n):
stride = s if i == 0 else 1
additv = True if i > 0 else False
module = block(self.xchannels[last_channel_idx], stride, t, additv)
features.append(module)
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, Cs={:}, stride={:}, expand={:}, original-C={:}".format(stage, i, n, len(features), self.xchannels[last_channel_idx], stride, t, c)
last_channel_idx += 1
if i + 1 == xblocks[stage]:
out_channel = module.out_dim
for iiL in range(i+1, n):
last_channel_idx += 1
self.xchannels[last_channel_idx][0] = module.out_dim
break
# building last several layers
features.append(ConvBNReLU(self.xchannels[last_channel_idx][0], self.xchannels[last_channel_idx][1], 1, 1, 1))
assert last_channel_idx + 2 == len(self.xchannels), '{:} vs {:}'.format(last_channel_idx, len(self.xchannels))
# make it nn.Sequential
self.features = nn.Sequential(*features)
# building inverted residual blocks
for stage, (t, c, n, s) in enumerate(inverted_residual_setting):
for i in range(n):
stride = s if i == 0 else 1
additv = True if i > 0 else False
module = block(self.xchannels[last_channel_idx], stride, t, additv)
features.append(module)
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, Cs={:}, stride={:}, expand={:}, original-C={:}".format(
stage,
i,
n,
len(features),
self.xchannels[last_channel_idx],
stride,
t,
c,
)
last_channel_idx += 1
if i + 1 == xblocks[stage]:
out_channel = module.out_dim
for iiL in range(i + 1, n):
last_channel_idx += 1
self.xchannels[last_channel_idx][0] = module.out_dim
break
# building last several layers
features.append(
ConvBNReLU(
self.xchannels[last_channel_idx][0],
self.xchannels[last_channel_idx][1],
1,
1,
1,
)
)
assert last_channel_idx + 2 == len(self.xchannels), "{:} vs {:}".format(
last_channel_idx, len(self.xchannels)
)
# make it nn.Sequential
self.features = nn.Sequential(*features)
# building classifier
self.classifier = nn.Sequential(
nn.Dropout(dropout),
nn.Linear(self.xchannels[last_channel_idx][1], num_classes),
)
# building classifier
self.classifier = nn.Sequential(
nn.Dropout(dropout),
nn.Linear(self.xchannels[last_channel_idx][1], num_classes),
)
# weight initialization
self.apply( initialize_resnet )
# weight initialization
self.apply(initialize_resnet)
def get_message(self):
return self.message
def get_message(self):
return self.message
def forward(self, inputs):
features = self.features(inputs)
vectors = features.mean([2, 3])
predicts = self.classifier(vectors)
return features, predicts
def forward(self, inputs):
features = self.features(inputs)
vectors = features.mean([2, 3])
predicts = self.classifier(vectors)
return features, predicts

View File

@@ -8,51 +8,57 @@ from models.cell_infers.cells import InferCell
class DynamicShapeTinyNet(nn.Module):
def __init__(self, channels: List[int], genotype: Any, num_classes: int):
super(DynamicShapeTinyNet, self).__init__()
self._channels = channels
if len(channels) % 3 != 2:
raise ValueError("invalid number of layers : {:}".format(len(channels)))
self._num_stage = N = len(channels) // 3
def __init__(self, channels: List[int], genotype: Any, num_classes: int):
super(DynamicShapeTinyNet, self).__init__()
self._channels = channels
if len(channels) % 3 != 2:
raise ValueError('invalid number of layers : {:}'.format(len(channels)))
self._num_stage = N = len(channels) // 3
self.stem = nn.Sequential(
nn.Conv2d(3, channels[0], kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(channels[0]),
)
self.stem = nn.Sequential(
nn.Conv2d(3, channels[0], kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(channels[0]))
# layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
# layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
c_prev = channels[0]
self.cells = nn.ModuleList()
for index, (c_curr, reduction) in enumerate(zip(channels, layer_reductions)):
if reduction:
cell = ResNetBasicblock(c_prev, c_curr, 2, True)
else:
cell = InferCell(genotype, c_prev, c_curr, 1)
self.cells.append(cell)
c_prev = cell.out_dim
self._num_layer = len(self.cells)
c_prev = channels[0]
self.cells = nn.ModuleList()
for index, (c_curr, reduction) in enumerate(zip(channels, layer_reductions)):
if reduction : cell = ResNetBasicblock(c_prev, c_curr, 2, True)
else : cell = InferCell(genotype, c_prev, c_curr, 1)
self.cells.append( cell )
c_prev = cell.out_dim
self._num_layer = len(self.cells)
self.lastact = nn.Sequential(nn.BatchNorm2d(c_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(c_prev, num_classes)
self.lastact = nn.Sequential(nn.BatchNorm2d(c_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(c_prev, num_classes)
def get_message(self) -> Text:
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += "\n {:02d}/{:02d} :: {:}".format(
i, len(self.cells), cell.extra_repr()
)
return string
def get_message(self) -> Text:
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
return string
def extra_repr(self):
return "{name}(C={_channels}, N={_num_stage}, L={_num_layer})".format(
name=self.__class__.__name__, **self.__dict__
)
def extra_repr(self):
return ('{name}(C={_channels}, N={_num_stage}, L={_num_layer})'.format(name=self.__class__.__name__, **self.__dict__))
def forward(self, inputs):
feature = self.stem(inputs)
for i, cell in enumerate(self.cells):
feature = cell(feature)
def forward(self, inputs):
feature = self.stem(inputs)
for i, cell in enumerate(self.cells):
feature = cell(feature)
out = self.lastact(feature)
out = self.global_pooling(out)
out = out.view(out.size(0), -1)
logits = self.classifier(out)
out = self.lastact(feature)
out = self.global_pooling( out )
out = out.view(out.size(0), -1)
logits = self.classifier(out)
return out, logits
return out, logits

View File

@@ -6,4 +6,4 @@ from .InferImagenetResNet import InferImagenetResNet
from .InferCifarResNet_depth import InferDepthCifarResNet
from .InferCifarResNet import InferCifarResNet
from .InferMobileNetV2 import InferMobileNetV2
from .InferTinyCellNet import DynamicShapeTinyNet
from .InferTinyCellNet import DynamicShapeTinyNet

View File

@@ -1,5 +1,5 @@
def parse_channel_info(xstring):
blocks = xstring.split(' ')
blocks = [x.split('-') for x in blocks]
blocks = [[int(_) for _ in x] for x in blocks]
return blocks
blocks = xstring.split(" ")
blocks = [x.split("-") for x in blocks]
blocks = [[int(_) for _ in x] for x in blocks]
return blocks

File diff suppressed because it is too large Load Diff

View File

@@ -6,335 +6,510 @@ from collections import OrderedDict
from bisect import bisect_right
import torch.nn as nn
from ..initialization import initialize_resnet
from ..SharedUtils import additive_func
from .SoftSelect import select2withP, ChannelWiseInter
from .SoftSelect import linear_forward
from .SoftSelect import get_width_choices
from ..SharedUtils import additive_func
from .SoftSelect import select2withP, ChannelWiseInter
from .SoftSelect import linear_forward
from .SoftSelect import get_width_choices
def get_depth_choices(nDepth, return_num):
if nDepth == 2:
choices = (1, 2)
elif nDepth == 3:
choices = (1, 2, 3)
elif nDepth > 3:
choices = list(range(1, nDepth+1, 2))
if choices[-1] < nDepth: choices.append(nDepth)
else:
raise ValueError('invalid nDepth : {:}'.format(nDepth))
if return_num: return len(choices)
else : return choices
if nDepth == 2:
choices = (1, 2)
elif nDepth == 3:
choices = (1, 2, 3)
elif nDepth > 3:
choices = list(range(1, nDepth + 1, 2))
if choices[-1] < nDepth:
choices.append(nDepth)
else:
raise ValueError("invalid nDepth : {:}".format(nDepth))
if return_num:
return len(choices)
else:
return choices
class ConvBNReLU(nn.Module):
num_conv = 1
def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu):
super(ConvBNReLU, self).__init__()
self.InShape = None
self.OutShape = None
self.choices = get_width_choices(nOut)
self.register_buffer('choices_tensor', torch.Tensor( self.choices ))
num_conv = 1
if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
else : self.avg = None
self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias)
if has_bn : self.bn = nn.BatchNorm2d(nOut)
else : self.bn = None
if has_relu: self.relu = nn.ReLU(inplace=False)
else : self.relu = None
self.in_dim = nIn
self.out_dim = nOut
def __init__(
self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu
):
super(ConvBNReLU, self).__init__()
self.InShape = None
self.OutShape = None
self.choices = get_width_choices(nOut)
self.register_buffer("choices_tensor", torch.Tensor(self.choices))
def get_flops(self, divide=1):
iC, oC = self.in_dim, self.out_dim
assert iC <= self.conv.in_channels and oC <= self.conv.out_channels, '{:} vs {:} | {:} vs {:}'.format(iC, self.conv.in_channels, oC, self.conv.out_channels)
assert isinstance(self.InShape, tuple) and len(self.InShape) == 2, 'invalid in-shape : {:}'.format(self.InShape)
assert isinstance(self.OutShape, tuple) and len(self.OutShape) == 2, 'invalid out-shape : {:}'.format(self.OutShape)
#conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
conv_per_position_flops = (self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups)
all_positions = self.OutShape[0] * self.OutShape[1]
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
if self.conv.bias is not None: flops += all_positions / divide
return flops
if has_avg:
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
else:
self.avg = None
self.conv = nn.Conv2d(
nIn,
nOut,
kernel_size=kernel,
stride=stride,
padding=padding,
dilation=1,
groups=1,
bias=bias,
)
if has_bn:
self.bn = nn.BatchNorm2d(nOut)
else:
self.bn = None
if has_relu:
self.relu = nn.ReLU(inplace=False)
else:
self.relu = None
self.in_dim = nIn
self.out_dim = nOut
def forward(self, inputs):
if self.avg : out = self.avg( inputs )
else : out = inputs
conv = self.conv( out )
if self.bn : out = self.bn( conv )
else : out = conv
if self.relu: out = self.relu( out )
else : out = out
if self.InShape is None:
self.InShape = (inputs.size(-2), inputs.size(-1))
self.OutShape = (out.size(-2) , out.size(-1))
return out
def get_flops(self, divide=1):
iC, oC = self.in_dim, self.out_dim
assert (
iC <= self.conv.in_channels and oC <= self.conv.out_channels
), "{:} vs {:} | {:} vs {:}".format(
iC, self.conv.in_channels, oC, self.conv.out_channels
)
assert (
isinstance(self.InShape, tuple) and len(self.InShape) == 2
), "invalid in-shape : {:}".format(self.InShape)
assert (
isinstance(self.OutShape, tuple) and len(self.OutShape) == 2
), "invalid out-shape : {:}".format(self.OutShape)
# conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
conv_per_position_flops = (
self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups
)
all_positions = self.OutShape[0] * self.OutShape[1]
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
if self.conv.bias is not None:
flops += all_positions / divide
return flops
def forward(self, inputs):
if self.avg:
out = self.avg(inputs)
else:
out = inputs
conv = self.conv(out)
if self.bn:
out = self.bn(conv)
else:
out = conv
if self.relu:
out = self.relu(out)
else:
out = out
if self.InShape is None:
self.InShape = (inputs.size(-2), inputs.size(-1))
self.OutShape = (out.size(-2), out.size(-1))
return out
class ResNetBasicblock(nn.Module):
expansion = 1
num_conv = 2
def __init__(self, inplanes, planes, stride):
super(ResNetBasicblock, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_b = ConvBNReLU( planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False)
if stride == 2:
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
elif inplanes != planes:
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
else:
self.downsample = None
self.out_dim = planes
self.search_mode = 'basic'
expansion = 1
num_conv = 2
def get_flops(self, divide=1):
flop_A = self.conv_a.get_flops(divide)
flop_B = self.conv_b.get_flops(divide)
if hasattr(self.downsample, 'get_flops'):
flop_C = self.downsample.get_flops(divide)
else:
flop_C = 0
return flop_A + flop_B + flop_C
def __init__(self, inplanes, planes, stride):
super(ResNetBasicblock, self).__init__()
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
self.conv_a = ConvBNReLU(
inplanes,
planes,
3,
stride,
1,
False,
has_avg=False,
has_bn=True,
has_relu=True,
)
self.conv_b = ConvBNReLU(
planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False
)
if stride == 2:
self.downsample = ConvBNReLU(
inplanes,
planes,
1,
1,
0,
False,
has_avg=True,
has_bn=False,
has_relu=False,
)
elif inplanes != planes:
self.downsample = ConvBNReLU(
inplanes,
planes,
1,
1,
0,
False,
has_avg=False,
has_bn=True,
has_relu=False,
)
else:
self.downsample = None
self.out_dim = planes
self.search_mode = "basic"
def forward(self, inputs):
basicblock = self.conv_a(inputs)
basicblock = self.conv_b(basicblock)
if self.downsample is not None: residual = self.downsample(inputs)
else : residual = inputs
out = additive_func(residual, basicblock)
return nn.functional.relu(out, inplace=True)
def get_flops(self, divide=1):
flop_A = self.conv_a.get_flops(divide)
flop_B = self.conv_b.get_flops(divide)
if hasattr(self.downsample, "get_flops"):
flop_C = self.downsample.get_flops(divide)
else:
flop_C = 0
return flop_A + flop_B + flop_C
def forward(self, inputs):
basicblock = self.conv_a(inputs)
basicblock = self.conv_b(basicblock)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = additive_func(residual, basicblock)
return nn.functional.relu(out, inplace=True)
class ResNetBottleneck(nn.Module):
expansion = 4
num_conv = 3
def __init__(self, inplanes, planes, stride):
super(ResNetBottleneck, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
self.conv_1x1 = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_3x3 = ConvBNReLU( planes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False)
if stride == 2:
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
elif inplanes != planes*self.expansion:
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
else:
self.downsample = None
self.out_dim = planes * self.expansion
self.search_mode = 'basic'
expansion = 4
num_conv = 3
def get_range(self):
return self.conv_1x1.get_range() + self.conv_3x3.get_range() + self.conv_1x4.get_range()
def __init__(self, inplanes, planes, stride):
super(ResNetBottleneck, self).__init__()
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
self.conv_1x1 = ConvBNReLU(
inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True
)
self.conv_3x3 = ConvBNReLU(
planes,
planes,
3,
stride,
1,
False,
has_avg=False,
has_bn=True,
has_relu=True,
)
self.conv_1x4 = ConvBNReLU(
planes,
planes * self.expansion,
1,
1,
0,
False,
has_avg=False,
has_bn=True,
has_relu=False,
)
if stride == 2:
self.downsample = ConvBNReLU(
inplanes,
planes * self.expansion,
1,
1,
0,
False,
has_avg=True,
has_bn=False,
has_relu=False,
)
elif inplanes != planes * self.expansion:
self.downsample = ConvBNReLU(
inplanes,
planes * self.expansion,
1,
1,
0,
False,
has_avg=False,
has_bn=True,
has_relu=False,
)
else:
self.downsample = None
self.out_dim = planes * self.expansion
self.search_mode = "basic"
def get_flops(self, divide):
flop_A = self.conv_1x1.get_flops(divide)
flop_B = self.conv_3x3.get_flops(divide)
flop_C = self.conv_1x4.get_flops(divide)
if hasattr(self.downsample, 'get_flops'):
flop_D = self.downsample.get_flops(divide)
else:
flop_D = 0
return flop_A + flop_B + flop_C + flop_D
def get_range(self):
return (
self.conv_1x1.get_range()
+ self.conv_3x3.get_range()
+ self.conv_1x4.get_range()
)
def forward(self, inputs):
bottleneck = self.conv_1x1(inputs)
bottleneck = self.conv_3x3(bottleneck)
bottleneck = self.conv_1x4(bottleneck)
if self.downsample is not None: residual = self.downsample(inputs)
else : residual = inputs
out = additive_func(residual, bottleneck)
return nn.functional.relu(out, inplace=True)
def get_flops(self, divide):
flop_A = self.conv_1x1.get_flops(divide)
flop_B = self.conv_3x3.get_flops(divide)
flop_C = self.conv_1x4.get_flops(divide)
if hasattr(self.downsample, "get_flops"):
flop_D = self.downsample.get_flops(divide)
else:
flop_D = 0
return flop_A + flop_B + flop_C + flop_D
def forward(self, inputs):
bottleneck = self.conv_1x1(inputs)
bottleneck = self.conv_3x3(bottleneck)
bottleneck = self.conv_1x4(bottleneck)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = additive_func(residual, bottleneck)
return nn.functional.relu(out, inplace=True)
class SearchDepthCifarResNet(nn.Module):
def __init__(self, block_name, depth, num_classes):
super(SearchDepthCifarResNet, self).__init__()
def __init__(self, block_name, depth, num_classes):
super(SearchDepthCifarResNet, self).__init__()
#Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
if block_name == 'ResNetBasicblock':
block = ResNetBasicblock
assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110'
layer_blocks = (depth - 2) // 6
elif block_name == 'ResNetBottleneck':
block = ResNetBottleneck
assert (depth - 2) % 9 == 0, 'depth should be one of 164'
layer_blocks = (depth - 2) // 9
else:
raise ValueError('invalid block : {:}'.format(block_name))
self.message = 'SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks)
self.num_classes = num_classes
self.channels = [16]
self.layers = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] )
self.InShape = None
self.depth_info = OrderedDict()
self.depth_at_i = OrderedDict()
for stage in range(3):
cur_block_choices = get_depth_choices(layer_blocks, False)
assert cur_block_choices[-1] == layer_blocks, 'stage={:}, {:} vs {:}'.format(stage, cur_block_choices, layer_blocks)
self.message += "\nstage={:} ::: depth-block-choices={:} for {:} blocks.".format(stage, cur_block_choices, layer_blocks)
block_choices, xstart = [], len(self.layers)
for iL in range(layer_blocks):
iC = self.channels[-1]
planes = 16 * (2**stage)
stride = 2 if stage > 0 and iL == 0 else 1
module = block(iC, planes, stride)
self.channels.append( module.out_dim )
self.layers.append ( module )
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride)
# added for depth
layer_index = len(self.layers) - 1
if iL + 1 in cur_block_choices: block_choices.append( layer_index )
if iL + 1 == layer_blocks:
self.depth_info[layer_index] = {'choices': block_choices,
'stage' : stage,
'xstart' : xstart}
self.depth_info_list = []
for xend, info in self.depth_info.items():
self.depth_info_list.append( (xend, info) )
xstart, xstage = info['xstart'], info['stage']
for ilayer in range(xstart, xend+1):
idx = bisect_right(info['choices'], ilayer-1)
self.depth_at_i[ilayer] = (xstage, idx)
self.avgpool = nn.AvgPool2d(8)
self.classifier = nn.Linear(module.out_dim, num_classes)
self.InShape = None
self.tau = -1
self.search_mode = 'basic'
#assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
self.register_parameter('depth_attentions', nn.Parameter(torch.Tensor(3, get_depth_choices(layer_blocks, True))))
nn.init.normal_(self.depth_attentions, 0, 0.01)
self.apply(initialize_resnet)
def arch_parameters(self):
return [self.depth_attentions]
def base_parameters(self):
return list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters())
def get_flop(self, mode, config_dict, extra_info):
if config_dict is not None: config_dict = config_dict.copy()
# select depth
if mode == 'genotype':
with torch.no_grad():
depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
choices = torch.argmax(depth_probs, dim=1).cpu().tolist()
elif mode == 'max':
choices = [depth_probs.size(1)-1 for _ in range(depth_probs.size(0))]
elif mode == 'random':
with torch.no_grad():
depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
choices = torch.multinomial(depth_probs, 1, False).cpu().tolist()
else:
raise ValueError('invalid mode : {:}'.format(mode))
selected_layers = []
for choice, xvalue in zip(choices, self.depth_info_list):
xtemp = xvalue[1]['choices'][choice] - xvalue[1]['xstart'] + 1
selected_layers.append(xtemp)
flop = 0
for i, layer in enumerate(self.layers):
if i in self.depth_at_i:
xstagei, xatti = self.depth_at_i[i]
if xatti <= choices[xstagei]: # leave this depth
flop+= layer.get_flops()
# Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
if block_name == "ResNetBasicblock":
block = ResNetBasicblock
assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110"
layer_blocks = (depth - 2) // 6
elif block_name == "ResNetBottleneck":
block = ResNetBottleneck
assert (depth - 2) % 9 == 0, "depth should be one of 164"
layer_blocks = (depth - 2) // 9
else:
flop+= 0 # do not use this layer
else:
flop+= layer.get_flops()
# the last fc layer
flop += self.classifier.in_features * self.classifier.out_features
if config_dict is None:
return flop / 1e6
else:
config_dict['xblocks'] = selected_layers
config_dict['super_type'] = 'infer-depth'
config_dict['estimated_FLOP'] = flop / 1e6
return flop / 1e6, config_dict
raise ValueError("invalid block : {:}".format(block_name))
def get_arch_info(self):
string = "for depth, there are {:} attention probabilities.".format(len(self.depth_attentions))
string+= '\n{:}'.format(self.depth_info)
discrepancy = []
with torch.no_grad():
for i, att in enumerate(self.depth_attentions):
prob = nn.functional.softmax(att, dim=0)
prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist()
prob = ['{:.3f}'.format(x) for x in prob]
xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.depth_attentions), ' '.join(prob))
logt = ['{:.4f}'.format(x) for x in att.cpu().tolist()]
xstring += ' || {:17s}'.format(' '.join(logt))
prob = sorted( [float(x) for x in prob] )
disc = prob[-1] - prob[-2]
xstring += ' || discrepancy={:.2f} || select={:}/{:}'.format(disc, selc, len(prob))
discrepancy.append( disc )
string += '\n{:}'.format(xstring)
return string, discrepancy
self.message = (
"SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}".format(
depth, layer_blocks
)
)
self.num_classes = num_classes
self.channels = [16]
self.layers = nn.ModuleList(
[
ConvBNReLU(
3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True
)
]
)
self.InShape = None
self.depth_info = OrderedDict()
self.depth_at_i = OrderedDict()
for stage in range(3):
cur_block_choices = get_depth_choices(layer_blocks, False)
assert (
cur_block_choices[-1] == layer_blocks
), "stage={:}, {:} vs {:}".format(stage, cur_block_choices, layer_blocks)
self.message += (
"\nstage={:} ::: depth-block-choices={:} for {:} blocks.".format(
stage, cur_block_choices, layer_blocks
)
)
block_choices, xstart = [], len(self.layers)
for iL in range(layer_blocks):
iC = self.channels[-1]
planes = 16 * (2 ** stage)
stride = 2 if stage > 0 and iL == 0 else 1
module = block(iC, planes, stride)
self.channels.append(module.out_dim)
self.layers.append(module)
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(
stage,
iL,
layer_blocks,
len(self.layers) - 1,
iC,
module.out_dim,
stride,
)
# added for depth
layer_index = len(self.layers) - 1
if iL + 1 in cur_block_choices:
block_choices.append(layer_index)
if iL + 1 == layer_blocks:
self.depth_info[layer_index] = {
"choices": block_choices,
"stage": stage,
"xstart": xstart,
}
self.depth_info_list = []
for xend, info in self.depth_info.items():
self.depth_info_list.append((xend, info))
xstart, xstage = info["xstart"], info["stage"]
for ilayer in range(xstart, xend + 1):
idx = bisect_right(info["choices"], ilayer - 1)
self.depth_at_i[ilayer] = (xstage, idx)
def set_tau(self, tau_max, tau_min, epoch_ratio):
assert epoch_ratio >= 0 and epoch_ratio <= 1, 'invalid epoch-ratio : {:}'.format(epoch_ratio)
tau = tau_min + (tau_max-tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
self.tau = tau
self.avgpool = nn.AvgPool2d(8)
self.classifier = nn.Linear(module.out_dim, num_classes)
self.InShape = None
self.tau = -1
self.search_mode = "basic"
# assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
def get_message(self):
return self.message
self.register_parameter(
"depth_attentions",
nn.Parameter(torch.Tensor(3, get_depth_choices(layer_blocks, True))),
)
nn.init.normal_(self.depth_attentions, 0, 0.01)
self.apply(initialize_resnet)
def forward(self, inputs):
if self.search_mode == 'basic':
return self.basic_forward(inputs)
elif self.search_mode == 'search':
return self.search_forward(inputs)
else:
raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
def arch_parameters(self):
return [self.depth_attentions]
def search_forward(self, inputs):
flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
flop_depth_probs = torch.flip( torch.cumsum( torch.flip(flop_depth_probs, [1]), 1 ), [1] )
selected_depth_probs = select2withP(self.depth_attentions, self.tau, True)
def base_parameters(self):
return (
list(self.layers.parameters())
+ list(self.avgpool.parameters())
+ list(self.classifier.parameters())
)
x, flops = inputs, []
feature_maps = []
for i, layer in enumerate(self.layers):
layer_i = layer( x )
feature_maps.append( layer_i )
if i in self.depth_info: # aggregate the information
choices = self.depth_info[i]['choices']
xstagei = self.depth_info[i]['stage']
possible_tensors = []
for tempi, A in enumerate(choices):
xtensor = feature_maps[A]
possible_tensors.append( xtensor )
weighted_sum = sum( xtensor * W for xtensor, W in zip(possible_tensors, selected_depth_probs[xstagei]) )
x = weighted_sum
else:
x = layer_i
if i in self.depth_at_i:
xstagei, xatti = self.depth_at_i[i]
#print ('layer-{:03d}, stage={:}, att={:}, prob={:}, flop={:}'.format(i, xstagei, xatti, flop_depth_probs[xstagei, xatti].item(), layer.get_flops(1e6)))
x_expected_flop = flop_depth_probs[xstagei, xatti] * layer.get_flops(1e6)
else:
x_expected_flop = layer.get_flops(1e6)
flops.append( x_expected_flop )
flops.append( (self.classifier.in_features * self.classifier.out_features*1.0/1e6) )
def get_flop(self, mode, config_dict, extra_info):
if config_dict is not None:
config_dict = config_dict.copy()
# select depth
if mode == "genotype":
with torch.no_grad():
depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
choices = torch.argmax(depth_probs, dim=1).cpu().tolist()
elif mode == "max":
choices = [depth_probs.size(1) - 1 for _ in range(depth_probs.size(0))]
elif mode == "random":
with torch.no_grad():
depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
choices = torch.multinomial(depth_probs, 1, False).cpu().tolist()
else:
raise ValueError("invalid mode : {:}".format(mode))
selected_layers = []
for choice, xvalue in zip(choices, self.depth_info_list):
xtemp = xvalue[1]["choices"][choice] - xvalue[1]["xstart"] + 1
selected_layers.append(xtemp)
flop = 0
for i, layer in enumerate(self.layers):
if i in self.depth_at_i:
xstagei, xatti = self.depth_at_i[i]
if xatti <= choices[xstagei]: # leave this depth
flop += layer.get_flops()
else:
flop += 0 # do not use this layer
else:
flop += layer.get_flops()
# the last fc layer
flop += self.classifier.in_features * self.classifier.out_features
if config_dict is None:
return flop / 1e6
else:
config_dict["xblocks"] = selected_layers
config_dict["super_type"] = "infer-depth"
config_dict["estimated_FLOP"] = flop / 1e6
return flop / 1e6, config_dict
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = linear_forward(features, self.classifier)
return logits, torch.stack( [sum(flops)] )
def get_arch_info(self):
string = "for depth, there are {:} attention probabilities.".format(
len(self.depth_attentions)
)
string += "\n{:}".format(self.depth_info)
discrepancy = []
with torch.no_grad():
for i, att in enumerate(self.depth_attentions):
prob = nn.functional.softmax(att, dim=0)
prob = prob.cpu()
selc = prob.argmax().item()
prob = prob.tolist()
prob = ["{:.3f}".format(x) for x in prob]
xstring = "{:03d}/{:03d}-th : {:}".format(
i, len(self.depth_attentions), " ".join(prob)
)
logt = ["{:.4f}".format(x) for x in att.cpu().tolist()]
xstring += " || {:17s}".format(" ".join(logt))
prob = sorted([float(x) for x in prob])
disc = prob[-1] - prob[-2]
xstring += " || discrepancy={:.2f} || select={:}/{:}".format(
disc, selc, len(prob)
)
discrepancy.append(disc)
string += "\n{:}".format(xstring)
return string, discrepancy
def basic_forward(self, inputs):
if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1))
x = inputs
for i, layer in enumerate(self.layers):
x = layer( x )
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = self.classifier(features)
return features, logits
def set_tau(self, tau_max, tau_min, epoch_ratio):
assert (
epoch_ratio >= 0 and epoch_ratio <= 1
), "invalid epoch-ratio : {:}".format(epoch_ratio)
tau = tau_min + (tau_max - tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
self.tau = tau
def get_message(self):
return self.message
def forward(self, inputs):
if self.search_mode == "basic":
return self.basic_forward(inputs)
elif self.search_mode == "search":
return self.search_forward(inputs)
else:
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
def search_forward(self, inputs):
flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
flop_depth_probs = torch.flip(
torch.cumsum(torch.flip(flop_depth_probs, [1]), 1), [1]
)
selected_depth_probs = select2withP(self.depth_attentions, self.tau, True)
x, flops = inputs, []
feature_maps = []
for i, layer in enumerate(self.layers):
layer_i = layer(x)
feature_maps.append(layer_i)
if i in self.depth_info: # aggregate the information
choices = self.depth_info[i]["choices"]
xstagei = self.depth_info[i]["stage"]
possible_tensors = []
for tempi, A in enumerate(choices):
xtensor = feature_maps[A]
possible_tensors.append(xtensor)
weighted_sum = sum(
xtensor * W
for xtensor, W in zip(
possible_tensors, selected_depth_probs[xstagei]
)
)
x = weighted_sum
else:
x = layer_i
if i in self.depth_at_i:
xstagei, xatti = self.depth_at_i[i]
# print ('layer-{:03d}, stage={:}, att={:}, prob={:}, flop={:}'.format(i, xstagei, xatti, flop_depth_probs[xstagei, xatti].item(), layer.get_flops(1e6)))
x_expected_flop = flop_depth_probs[xstagei, xatti] * layer.get_flops(
1e6
)
else:
x_expected_flop = layer.get_flops(1e6)
flops.append(x_expected_flop)
flops.append(
(self.classifier.in_features * self.classifier.out_features * 1.0 / 1e6)
)
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = linear_forward(features, self.classifier)
return logits, torch.stack([sum(flops)])
def basic_forward(self, inputs):
if self.InShape is None:
self.InShape = (inputs.size(-2), inputs.size(-1))
x = inputs
for i, layer in enumerate(self.layers):
x = layer(x)
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = self.classifier(features)
return features, logits

View File

@@ -4,390 +4,616 @@
import math, torch
import torch.nn as nn
from ..initialization import initialize_resnet
from ..SharedUtils import additive_func
from .SoftSelect import select2withP, ChannelWiseInter
from .SoftSelect import linear_forward
from .SoftSelect import get_width_choices as get_choices
from ..SharedUtils import additive_func
from .SoftSelect import select2withP, ChannelWiseInter
from .SoftSelect import linear_forward
from .SoftSelect import get_width_choices as get_choices
def conv_forward(inputs, conv, choices):
iC = conv.in_channels
fill_size = list(inputs.size())
fill_size[1] = iC - fill_size[1]
filled = torch.zeros(fill_size, device=inputs.device)
xinputs = torch.cat((inputs, filled), dim=1)
outputs = conv(xinputs)
selecteds = [outputs[:,:oC] for oC in choices]
return selecteds
iC = conv.in_channels
fill_size = list(inputs.size())
fill_size[1] = iC - fill_size[1]
filled = torch.zeros(fill_size, device=inputs.device)
xinputs = torch.cat((inputs, filled), dim=1)
outputs = conv(xinputs)
selecteds = [outputs[:, :oC] for oC in choices]
return selecteds
class ConvBNReLU(nn.Module):
num_conv = 1
def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu):
super(ConvBNReLU, self).__init__()
self.InShape = None
self.OutShape = None
self.choices = get_choices(nOut)
self.register_buffer('choices_tensor', torch.Tensor( self.choices ))
num_conv = 1
if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
else : self.avg = None
self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias)
#if has_bn : self.bn = nn.BatchNorm2d(nOut)
#else : self.bn = None
self.has_bn = has_bn
self.BNs = nn.ModuleList()
for i, _out in enumerate(self.choices):
self.BNs.append(nn.BatchNorm2d(_out))
if has_relu: self.relu = nn.ReLU(inplace=True)
else : self.relu = None
self.in_dim = nIn
self.out_dim = nOut
self.search_mode = 'basic'
def __init__(
self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu
):
super(ConvBNReLU, self).__init__()
self.InShape = None
self.OutShape = None
self.choices = get_choices(nOut)
self.register_buffer("choices_tensor", torch.Tensor(self.choices))
def get_flops(self, channels, check_range=True, divide=1):
iC, oC = channels
if check_range: assert iC <= self.conv.in_channels and oC <= self.conv.out_channels, '{:} vs {:} | {:} vs {:}'.format(iC, self.conv.in_channels, oC, self.conv.out_channels)
assert isinstance(self.InShape, tuple) and len(self.InShape) == 2, 'invalid in-shape : {:}'.format(self.InShape)
assert isinstance(self.OutShape, tuple) and len(self.OutShape) == 2, 'invalid out-shape : {:}'.format(self.OutShape)
#conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
conv_per_position_flops = (self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups)
all_positions = self.OutShape[0] * self.OutShape[1]
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
if self.conv.bias is not None: flops += all_positions / divide
return flops
if has_avg:
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
else:
self.avg = None
self.conv = nn.Conv2d(
nIn,
nOut,
kernel_size=kernel,
stride=stride,
padding=padding,
dilation=1,
groups=1,
bias=bias,
)
# if has_bn : self.bn = nn.BatchNorm2d(nOut)
# else : self.bn = None
self.has_bn = has_bn
self.BNs = nn.ModuleList()
for i, _out in enumerate(self.choices):
self.BNs.append(nn.BatchNorm2d(_out))
if has_relu:
self.relu = nn.ReLU(inplace=True)
else:
self.relu = None
self.in_dim = nIn
self.out_dim = nOut
self.search_mode = "basic"
def get_range(self):
return [self.choices]
def get_flops(self, channels, check_range=True, divide=1):
iC, oC = channels
if check_range:
assert (
iC <= self.conv.in_channels and oC <= self.conv.out_channels
), "{:} vs {:} | {:} vs {:}".format(
iC, self.conv.in_channels, oC, self.conv.out_channels
)
assert (
isinstance(self.InShape, tuple) and len(self.InShape) == 2
), "invalid in-shape : {:}".format(self.InShape)
assert (
isinstance(self.OutShape, tuple) and len(self.OutShape) == 2
), "invalid out-shape : {:}".format(self.OutShape)
# conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
conv_per_position_flops = (
self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups
)
all_positions = self.OutShape[0] * self.OutShape[1]
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
if self.conv.bias is not None:
flops += all_positions / divide
return flops
def forward(self, inputs):
if self.search_mode == 'basic':
return self.basic_forward(inputs)
elif self.search_mode == 'search':
return self.search_forward(inputs)
else:
raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
def get_range(self):
return [self.choices]
def search_forward(self, tuple_inputs):
assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) )
inputs, expected_inC, probability, index, prob = tuple_inputs
index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob)
probability = torch.squeeze(probability)
assert len(index) == 2, 'invalid length : {:}'.format(index)
# compute expected flop
#coordinates = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability)
expected_outC = (self.choices_tensor * probability).sum()
expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6)
if self.avg : out = self.avg( inputs )
else : out = inputs
# convolutional layer
out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index])
out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)]
# merge
out_channel = max([x.size(1) for x in out_bns])
outA = ChannelWiseInter(out_bns[0], out_channel)
outB = ChannelWiseInter(out_bns[1], out_channel)
out = outA * prob[0] + outB * prob[1]
#out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1])
def forward(self, inputs):
if self.search_mode == "basic":
return self.basic_forward(inputs)
elif self.search_mode == "search":
return self.search_forward(inputs)
else:
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
if self.relu: out = self.relu( out )
else : out = out
return out, expected_outC, expected_flop
def search_forward(self, tuple_inputs):
assert (
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
), "invalid type input : {:}".format(type(tuple_inputs))
inputs, expected_inC, probability, index, prob = tuple_inputs
index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob)
probability = torch.squeeze(probability)
assert len(index) == 2, "invalid length : {:}".format(index)
# compute expected flop
# coordinates = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability)
expected_outC = (self.choices_tensor * probability).sum()
expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6)
if self.avg:
out = self.avg(inputs)
else:
out = inputs
# convolutional layer
out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index])
out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)]
# merge
out_channel = max([x.size(1) for x in out_bns])
outA = ChannelWiseInter(out_bns[0], out_channel)
outB = ChannelWiseInter(out_bns[1], out_channel)
out = outA * prob[0] + outB * prob[1]
# out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1])
def basic_forward(self, inputs):
if self.avg : out = self.avg( inputs )
else : out = inputs
conv = self.conv( out )
if self.has_bn:out= self.BNs[-1]( conv )
else : out = conv
if self.relu: out = self.relu( out )
else : out = out
if self.InShape is None:
self.InShape = (inputs.size(-2), inputs.size(-1))
self.OutShape = (out.size(-2) , out.size(-1))
return out
if self.relu:
out = self.relu(out)
else:
out = out
return out, expected_outC, expected_flop
def basic_forward(self, inputs):
if self.avg:
out = self.avg(inputs)
else:
out = inputs
conv = self.conv(out)
if self.has_bn:
out = self.BNs[-1](conv)
else:
out = conv
if self.relu:
out = self.relu(out)
else:
out = out
if self.InShape is None:
self.InShape = (inputs.size(-2), inputs.size(-1))
self.OutShape = (out.size(-2), out.size(-1))
return out
class ResNetBasicblock(nn.Module):
expansion = 1
num_conv = 2
def __init__(self, inplanes, planes, stride):
super(ResNetBasicblock, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_b = ConvBNReLU( planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False)
if stride == 2:
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
elif inplanes != planes:
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
else:
self.downsample = None
self.out_dim = planes
self.search_mode = 'basic'
expansion = 1
num_conv = 2
def get_range(self):
return self.conv_a.get_range() + self.conv_b.get_range()
def __init__(self, inplanes, planes, stride):
super(ResNetBasicblock, self).__init__()
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
self.conv_a = ConvBNReLU(
inplanes,
planes,
3,
stride,
1,
False,
has_avg=False,
has_bn=True,
has_relu=True,
)
self.conv_b = ConvBNReLU(
planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False
)
if stride == 2:
self.downsample = ConvBNReLU(
inplanes,
planes,
1,
1,
0,
False,
has_avg=True,
has_bn=False,
has_relu=False,
)
elif inplanes != planes:
self.downsample = ConvBNReLU(
inplanes,
planes,
1,
1,
0,
False,
has_avg=False,
has_bn=True,
has_relu=False,
)
else:
self.downsample = None
self.out_dim = planes
self.search_mode = "basic"
def get_flops(self, channels):
assert len(channels) == 3, 'invalid channels : {:}'.format(channels)
flop_A = self.conv_a.get_flops([channels[0], channels[1]])
flop_B = self.conv_b.get_flops([channels[1], channels[2]])
if hasattr(self.downsample, 'get_flops'):
flop_C = self.downsample.get_flops([channels[0], channels[-1]])
else:
flop_C = 0
if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train
flop_C = channels[0] * channels[-1] * self.conv_b.OutShape[0] * self.conv_b.OutShape[1]
return flop_A + flop_B + flop_C
def get_range(self):
return self.conv_a.get_range() + self.conv_b.get_range()
def forward(self, inputs):
if self.search_mode == 'basic' : return self.basic_forward(inputs)
elif self.search_mode == 'search': return self.search_forward(inputs)
else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
def get_flops(self, channels):
assert len(channels) == 3, "invalid channels : {:}".format(channels)
flop_A = self.conv_a.get_flops([channels[0], channels[1]])
flop_B = self.conv_b.get_flops([channels[1], channels[2]])
if hasattr(self.downsample, "get_flops"):
flop_C = self.downsample.get_flops([channels[0], channels[-1]])
else:
flop_C = 0
if (
channels[0] != channels[-1] and self.downsample is None
): # this short-cut will be added during the infer-train
flop_C = (
channels[0]
* channels[-1]
* self.conv_b.OutShape[0]
* self.conv_b.OutShape[1]
)
return flop_A + flop_B + flop_C
def search_forward(self, tuple_inputs):
assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) )
inputs, expected_inC, probability, indexes, probs = tuple_inputs
assert indexes.size(0) == 2 and probs.size(0) == 2 and probability.size(0) == 2
out_a, expected_inC_a, expected_flop_a = self.conv_a( (inputs, expected_inC , probability[0], indexes[0], probs[0]) )
out_b, expected_inC_b, expected_flop_b = self.conv_b( (out_a , expected_inC_a, probability[1], indexes[1], probs[1]) )
if self.downsample is not None:
residual, _, expected_flop_c = self.downsample( (inputs, expected_inC , probability[1], indexes[1], probs[1]) )
else:
residual, expected_flop_c = inputs, 0
out = additive_func(residual, out_b)
return nn.functional.relu(out, inplace=True), expected_inC_b, sum([expected_flop_a, expected_flop_b, expected_flop_c])
def forward(self, inputs):
if self.search_mode == "basic":
return self.basic_forward(inputs)
elif self.search_mode == "search":
return self.search_forward(inputs)
else:
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
def basic_forward(self, inputs):
basicblock = self.conv_a(inputs)
basicblock = self.conv_b(basicblock)
if self.downsample is not None: residual = self.downsample(inputs)
else : residual = inputs
out = additive_func(residual, basicblock)
return nn.functional.relu(out, inplace=True)
def search_forward(self, tuple_inputs):
assert (
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
), "invalid type input : {:}".format(type(tuple_inputs))
inputs, expected_inC, probability, indexes, probs = tuple_inputs
assert indexes.size(0) == 2 and probs.size(0) == 2 and probability.size(0) == 2
out_a, expected_inC_a, expected_flop_a = self.conv_a(
(inputs, expected_inC, probability[0], indexes[0], probs[0])
)
out_b, expected_inC_b, expected_flop_b = self.conv_b(
(out_a, expected_inC_a, probability[1], indexes[1], probs[1])
)
if self.downsample is not None:
residual, _, expected_flop_c = self.downsample(
(inputs, expected_inC, probability[1], indexes[1], probs[1])
)
else:
residual, expected_flop_c = inputs, 0
out = additive_func(residual, out_b)
return (
nn.functional.relu(out, inplace=True),
expected_inC_b,
sum([expected_flop_a, expected_flop_b, expected_flop_c]),
)
def basic_forward(self, inputs):
basicblock = self.conv_a(inputs)
basicblock = self.conv_b(basicblock)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = additive_func(residual, basicblock)
return nn.functional.relu(out, inplace=True)
class ResNetBottleneck(nn.Module):
expansion = 4
num_conv = 3
def __init__(self, inplanes, planes, stride):
super(ResNetBottleneck, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
self.conv_1x1 = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_3x3 = ConvBNReLU( planes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False)
if stride == 2:
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
elif inplanes != planes*self.expansion:
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
else:
self.downsample = None
self.out_dim = planes * self.expansion
self.search_mode = 'basic'
expansion = 4
num_conv = 3
def get_range(self):
return self.conv_1x1.get_range() + self.conv_3x3.get_range() + self.conv_1x4.get_range()
def __init__(self, inplanes, planes, stride):
super(ResNetBottleneck, self).__init__()
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
self.conv_1x1 = ConvBNReLU(
inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True
)
self.conv_3x3 = ConvBNReLU(
planes,
planes,
3,
stride,
1,
False,
has_avg=False,
has_bn=True,
has_relu=True,
)
self.conv_1x4 = ConvBNReLU(
planes,
planes * self.expansion,
1,
1,
0,
False,
has_avg=False,
has_bn=True,
has_relu=False,
)
if stride == 2:
self.downsample = ConvBNReLU(
inplanes,
planes * self.expansion,
1,
1,
0,
False,
has_avg=True,
has_bn=False,
has_relu=False,
)
elif inplanes != planes * self.expansion:
self.downsample = ConvBNReLU(
inplanes,
planes * self.expansion,
1,
1,
0,
False,
has_avg=False,
has_bn=True,
has_relu=False,
)
else:
self.downsample = None
self.out_dim = planes * self.expansion
self.search_mode = "basic"
def get_flops(self, channels):
assert len(channels) == 4, 'invalid channels : {:}'.format(channels)
flop_A = self.conv_1x1.get_flops([channels[0], channels[1]])
flop_B = self.conv_3x3.get_flops([channels[1], channels[2]])
flop_C = self.conv_1x4.get_flops([channels[2], channels[3]])
if hasattr(self.downsample, 'get_flops'):
flop_D = self.downsample.get_flops([channels[0], channels[-1]])
else:
flop_D = 0
if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train
flop_D = channels[0] * channels[-1] * self.conv_1x4.OutShape[0] * self.conv_1x4.OutShape[1]
return flop_A + flop_B + flop_C + flop_D
def get_range(self):
return (
self.conv_1x1.get_range()
+ self.conv_3x3.get_range()
+ self.conv_1x4.get_range()
)
def forward(self, inputs):
if self.search_mode == 'basic' : return self.basic_forward(inputs)
elif self.search_mode == 'search': return self.search_forward(inputs)
else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
def get_flops(self, channels):
assert len(channels) == 4, "invalid channels : {:}".format(channels)
flop_A = self.conv_1x1.get_flops([channels[0], channels[1]])
flop_B = self.conv_3x3.get_flops([channels[1], channels[2]])
flop_C = self.conv_1x4.get_flops([channels[2], channels[3]])
if hasattr(self.downsample, "get_flops"):
flop_D = self.downsample.get_flops([channels[0], channels[-1]])
else:
flop_D = 0
if (
channels[0] != channels[-1] and self.downsample is None
): # this short-cut will be added during the infer-train
flop_D = (
channels[0]
* channels[-1]
* self.conv_1x4.OutShape[0]
* self.conv_1x4.OutShape[1]
)
return flop_A + flop_B + flop_C + flop_D
def basic_forward(self, inputs):
bottleneck = self.conv_1x1(inputs)
bottleneck = self.conv_3x3(bottleneck)
bottleneck = self.conv_1x4(bottleneck)
if self.downsample is not None: residual = self.downsample(inputs)
else : residual = inputs
out = additive_func(residual, bottleneck)
return nn.functional.relu(out, inplace=True)
def forward(self, inputs):
if self.search_mode == "basic":
return self.basic_forward(inputs)
elif self.search_mode == "search":
return self.search_forward(inputs)
else:
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
def search_forward(self, tuple_inputs):
assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) )
inputs, expected_inC, probability, indexes, probs = tuple_inputs
assert indexes.size(0) == 3 and probs.size(0) == 3 and probability.size(0) == 3
out_1x1, expected_inC_1x1, expected_flop_1x1 = self.conv_1x1( (inputs, expected_inC , probability[0], indexes[0], probs[0]) )
out_3x3, expected_inC_3x3, expected_flop_3x3 = self.conv_3x3( (out_1x1,expected_inC_1x1, probability[1], indexes[1], probs[1]) )
out_1x4, expected_inC_1x4, expected_flop_1x4 = self.conv_1x4( (out_3x3,expected_inC_3x3, probability[2], indexes[2], probs[2]) )
if self.downsample is not None:
residual, _, expected_flop_c = self.downsample( (inputs, expected_inC , probability[2], indexes[2], probs[2]) )
else:
residual, expected_flop_c = inputs, 0
out = additive_func(residual, out_1x4)
return nn.functional.relu(out, inplace=True), expected_inC_1x4, sum([expected_flop_1x1, expected_flop_3x3, expected_flop_1x4, expected_flop_c])
def basic_forward(self, inputs):
bottleneck = self.conv_1x1(inputs)
bottleneck = self.conv_3x3(bottleneck)
bottleneck = self.conv_1x4(bottleneck)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = additive_func(residual, bottleneck)
return nn.functional.relu(out, inplace=True)
def search_forward(self, tuple_inputs):
assert (
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
), "invalid type input : {:}".format(type(tuple_inputs))
inputs, expected_inC, probability, indexes, probs = tuple_inputs
assert indexes.size(0) == 3 and probs.size(0) == 3 and probability.size(0) == 3
out_1x1, expected_inC_1x1, expected_flop_1x1 = self.conv_1x1(
(inputs, expected_inC, probability[0], indexes[0], probs[0])
)
out_3x3, expected_inC_3x3, expected_flop_3x3 = self.conv_3x3(
(out_1x1, expected_inC_1x1, probability[1], indexes[1], probs[1])
)
out_1x4, expected_inC_1x4, expected_flop_1x4 = self.conv_1x4(
(out_3x3, expected_inC_3x3, probability[2], indexes[2], probs[2])
)
if self.downsample is not None:
residual, _, expected_flop_c = self.downsample(
(inputs, expected_inC, probability[2], indexes[2], probs[2])
)
else:
residual, expected_flop_c = inputs, 0
out = additive_func(residual, out_1x4)
return (
nn.functional.relu(out, inplace=True),
expected_inC_1x4,
sum(
[
expected_flop_1x1,
expected_flop_3x3,
expected_flop_1x4,
expected_flop_c,
]
),
)
class SearchWidthCifarResNet(nn.Module):
def __init__(self, block_name, depth, num_classes):
super(SearchWidthCifarResNet, self).__init__()
def __init__(self, block_name, depth, num_classes):
super(SearchWidthCifarResNet, self).__init__()
# Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
if block_name == "ResNetBasicblock":
block = ResNetBasicblock
assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110"
layer_blocks = (depth - 2) // 6
elif block_name == "ResNetBottleneck":
block = ResNetBottleneck
assert (depth - 2) % 9 == 0, "depth should be one of 164"
layer_blocks = (depth - 2) // 9
else:
raise ValueError("invalid block : {:}".format(block_name))
#Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
if block_name == 'ResNetBasicblock':
block = ResNetBasicblock
assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110'
layer_blocks = (depth - 2) // 6
elif block_name == 'ResNetBottleneck':
block = ResNetBottleneck
assert (depth - 2) % 9 == 0, 'depth should be one of 164'
layer_blocks = (depth - 2) // 9
else:
raise ValueError('invalid block : {:}'.format(block_name))
self.message = (
"SearchWidthCifarResNet : Depth : {:} , Layers for each block : {:}".format(
depth, layer_blocks
)
)
self.num_classes = num_classes
self.channels = [16]
self.layers = nn.ModuleList(
[
ConvBNReLU(
3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True
)
]
)
self.InShape = None
for stage in range(3):
for iL in range(layer_blocks):
iC = self.channels[-1]
planes = 16 * (2 ** stage)
stride = 2 if stage > 0 and iL == 0 else 1
module = block(iC, planes, stride)
self.channels.append(module.out_dim)
self.layers.append(module)
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(
stage,
iL,
layer_blocks,
len(self.layers) - 1,
iC,
module.out_dim,
stride,
)
self.message = 'SearchWidthCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks)
self.num_classes = num_classes
self.channels = [16]
self.layers = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] )
self.InShape = None
for stage in range(3):
for iL in range(layer_blocks):
iC = self.channels[-1]
planes = 16 * (2**stage)
stride = 2 if stage > 0 and iL == 0 else 1
module = block(iC, planes, stride)
self.channels.append( module.out_dim )
self.layers.append ( module )
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride)
self.avgpool = nn.AvgPool2d(8)
self.classifier = nn.Linear(module.out_dim, num_classes)
self.InShape = None
self.tau = -1
self.search_mode = 'basic'
#assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
# parameters for width
self.Ranges = []
self.layer2indexRange = []
for i, layer in enumerate(self.layers):
start_index = len(self.Ranges)
self.Ranges += layer.get_range()
self.layer2indexRange.append( (start_index, len(self.Ranges)) )
assert len(self.Ranges) + 1 == depth, 'invalid depth check {:} vs {:}'.format(len(self.Ranges) + 1, depth)
self.avgpool = nn.AvgPool2d(8)
self.classifier = nn.Linear(module.out_dim, num_classes)
self.InShape = None
self.tau = -1
self.search_mode = "basic"
# assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
self.register_parameter('width_attentions', nn.Parameter(torch.Tensor(len(self.Ranges), get_choices(None))))
nn.init.normal_(self.width_attentions, 0, 0.01)
self.apply(initialize_resnet)
# parameters for width
self.Ranges = []
self.layer2indexRange = []
for i, layer in enumerate(self.layers):
start_index = len(self.Ranges)
self.Ranges += layer.get_range()
self.layer2indexRange.append((start_index, len(self.Ranges)))
assert len(self.Ranges) + 1 == depth, "invalid depth check {:} vs {:}".format(
len(self.Ranges) + 1, depth
)
def arch_parameters(self):
return [self.width_attentions]
self.register_parameter(
"width_attentions",
nn.Parameter(torch.Tensor(len(self.Ranges), get_choices(None))),
)
nn.init.normal_(self.width_attentions, 0, 0.01)
self.apply(initialize_resnet)
def base_parameters(self):
return list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters())
def arch_parameters(self):
return [self.width_attentions]
def get_flop(self, mode, config_dict, extra_info):
if config_dict is not None: config_dict = config_dict.copy()
#weights = [F.softmax(x, dim=0) for x in self.width_attentions]
channels = [3]
for i, weight in enumerate(self.width_attentions):
if mode == 'genotype':
def base_parameters(self):
return (
list(self.layers.parameters())
+ list(self.avgpool.parameters())
+ list(self.classifier.parameters())
)
def get_flop(self, mode, config_dict, extra_info):
if config_dict is not None:
config_dict = config_dict.copy()
# weights = [F.softmax(x, dim=0) for x in self.width_attentions]
channels = [3]
for i, weight in enumerate(self.width_attentions):
if mode == "genotype":
with torch.no_grad():
probe = nn.functional.softmax(weight, dim=0)
C = self.Ranges[i][torch.argmax(probe).item()]
elif mode == "max":
C = self.Ranges[i][-1]
elif mode == "fix":
C = int(math.sqrt(extra_info) * self.Ranges[i][-1])
elif mode == "random":
assert isinstance(extra_info, float), "invalid extra_info : {:}".format(
extra_info
)
with torch.no_grad():
prob = nn.functional.softmax(weight, dim=0)
approximate_C = int(math.sqrt(extra_info) * self.Ranges[i][-1])
for j in range(prob.size(0)):
prob[j] = 1 / (
abs(j - (approximate_C - self.Ranges[i][j])) + 0.2
)
C = self.Ranges[i][torch.multinomial(prob, 1, False).item()]
else:
raise ValueError("invalid mode : {:}".format(mode))
channels.append(C)
flop = 0
for i, layer in enumerate(self.layers):
s, e = self.layer2indexRange[i]
xchl = tuple(channels[s : e + 1])
flop += layer.get_flops(xchl)
# the last fc layer
flop += channels[-1] * self.classifier.out_features
if config_dict is None:
return flop / 1e6
else:
config_dict["xchannels"] = channels
config_dict["super_type"] = "infer-width"
config_dict["estimated_FLOP"] = flop / 1e6
return flop / 1e6, config_dict
def get_arch_info(self):
string = "for width, there are {:} attention probabilities.".format(
len(self.width_attentions)
)
discrepancy = []
with torch.no_grad():
probe = nn.functional.softmax(weight, dim=0)
C = self.Ranges[i][ torch.argmax(probe).item() ]
elif mode == 'max':
C = self.Ranges[i][-1]
elif mode == 'fix':
C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] )
elif mode == 'random':
assert isinstance(extra_info, float), 'invalid extra_info : {:}'.format(extra_info)
for i, att in enumerate(self.width_attentions):
prob = nn.functional.softmax(att, dim=0)
prob = prob.cpu()
selc = prob.argmax().item()
prob = prob.tolist()
prob = ["{:.3f}".format(x) for x in prob]
xstring = "{:03d}/{:03d}-th : {:}".format(
i, len(self.width_attentions), " ".join(prob)
)
logt = ["{:.3f}".format(x) for x in att.cpu().tolist()]
xstring += " || {:52s}".format(" ".join(logt))
prob = sorted([float(x) for x in prob])
disc = prob[-1] - prob[-2]
xstring += " || dis={:.2f} || select={:}/{:}".format(
disc, selc, len(prob)
)
discrepancy.append(disc)
string += "\n{:}".format(xstring)
return string, discrepancy
def set_tau(self, tau_max, tau_min, epoch_ratio):
assert (
epoch_ratio >= 0 and epoch_ratio <= 1
), "invalid epoch-ratio : {:}".format(epoch_ratio)
tau = tau_min + (tau_max - tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
self.tau = tau
def get_message(self):
return self.message
def forward(self, inputs):
if self.search_mode == "basic":
return self.basic_forward(inputs)
elif self.search_mode == "search":
return self.search_forward(inputs)
else:
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
def search_forward(self, inputs):
flop_probs = nn.functional.softmax(self.width_attentions, dim=1)
selected_widths, selected_probs = select2withP(self.width_attentions, self.tau)
with torch.no_grad():
prob = nn.functional.softmax(weight, dim=0)
approximate_C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] )
for j in range(prob.size(0)):
prob[j] = 1 / (abs(j - (approximate_C-self.Ranges[i][j])) + 0.2)
C = self.Ranges[i][ torch.multinomial(prob, 1, False).item() ]
else:
raise ValueError('invalid mode : {:}'.format(mode))
channels.append( C )
flop = 0
for i, layer in enumerate(self.layers):
s, e = self.layer2indexRange[i]
xchl = tuple( channels[s:e+1] )
flop+= layer.get_flops(xchl)
# the last fc layer
flop += channels[-1] * self.classifier.out_features
if config_dict is None:
return flop / 1e6
else:
config_dict['xchannels'] = channels
config_dict['super_type'] = 'infer-width'
config_dict['estimated_FLOP'] = flop / 1e6
return flop / 1e6, config_dict
selected_widths = selected_widths.cpu()
def get_arch_info(self):
string = "for width, there are {:} attention probabilities.".format(len(self.width_attentions))
discrepancy = []
with torch.no_grad():
for i, att in enumerate(self.width_attentions):
prob = nn.functional.softmax(att, dim=0)
prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist()
prob = ['{:.3f}'.format(x) for x in prob]
xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.width_attentions), ' '.join(prob))
logt = ['{:.3f}'.format(x) for x in att.cpu().tolist()]
xstring += ' || {:52s}'.format(' '.join(logt))
prob = sorted( [float(x) for x in prob] )
disc = prob[-1] - prob[-2]
xstring += ' || dis={:.2f} || select={:}/{:}'.format(disc, selc, len(prob))
discrepancy.append( disc )
string += '\n{:}'.format(xstring)
return string, discrepancy
x, last_channel_idx, expected_inC, flops = inputs, 0, 3, []
for i, layer in enumerate(self.layers):
selected_w_index = selected_widths[
last_channel_idx : last_channel_idx + layer.num_conv
]
selected_w_probs = selected_probs[
last_channel_idx : last_channel_idx + layer.num_conv
]
layer_prob = flop_probs[
last_channel_idx : last_channel_idx + layer.num_conv
]
x, expected_inC, expected_flop = layer(
(x, expected_inC, layer_prob, selected_w_index, selected_w_probs)
)
last_channel_idx += layer.num_conv
flops.append(expected_flop)
flops.append(expected_inC * (self.classifier.out_features * 1.0 / 1e6))
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = linear_forward(features, self.classifier)
return logits, torch.stack([sum(flops)])
def set_tau(self, tau_max, tau_min, epoch_ratio):
assert epoch_ratio >= 0 and epoch_ratio <= 1, 'invalid epoch-ratio : {:}'.format(epoch_ratio)
tau = tau_min + (tau_max-tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
self.tau = tau
def get_message(self):
return self.message
def forward(self, inputs):
if self.search_mode == 'basic':
return self.basic_forward(inputs)
elif self.search_mode == 'search':
return self.search_forward(inputs)
else:
raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
def search_forward(self, inputs):
flop_probs = nn.functional.softmax(self.width_attentions, dim=1)
selected_widths, selected_probs = select2withP(self.width_attentions, self.tau)
with torch.no_grad():
selected_widths = selected_widths.cpu()
x, last_channel_idx, expected_inC, flops = inputs, 0, 3, []
for i, layer in enumerate(self.layers):
selected_w_index = selected_widths[last_channel_idx: last_channel_idx+layer.num_conv]
selected_w_probs = selected_probs[last_channel_idx: last_channel_idx+layer.num_conv]
layer_prob = flop_probs[last_channel_idx: last_channel_idx+layer.num_conv]
x, expected_inC, expected_flop = layer( (x, expected_inC, layer_prob, selected_w_index, selected_w_probs) )
last_channel_idx += layer.num_conv
flops.append( expected_flop )
flops.append( expected_inC * (self.classifier.out_features*1.0/1e6) )
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = linear_forward(features, self.classifier)
return logits, torch.stack( [sum(flops)] )
def basic_forward(self, inputs):
if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1))
x = inputs
for i, layer in enumerate(self.layers):
x = layer( x )
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = self.classifier(features)
return features, logits
def basic_forward(self, inputs):
if self.InShape is None:
self.InShape = (inputs.size(-2), inputs.size(-1))
x = inputs
for i, layer in enumerate(self.layers):
x = layer(x)
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = self.classifier(features)
return features, logits

File diff suppressed because it is too large Load Diff

View File

@@ -4,313 +4,463 @@
import math, torch
import torch.nn as nn
from ..initialization import initialize_resnet
from ..SharedUtils import additive_func
from .SoftSelect import select2withP, ChannelWiseInter
from .SoftSelect import linear_forward
from .SoftSelect import get_width_choices as get_choices
from ..SharedUtils import additive_func
from .SoftSelect import select2withP, ChannelWiseInter
from .SoftSelect import linear_forward
from .SoftSelect import get_width_choices as get_choices
def conv_forward(inputs, conv, choices):
iC = conv.in_channels
fill_size = list(inputs.size())
fill_size[1] = iC - fill_size[1]
filled = torch.zeros(fill_size, device=inputs.device)
xinputs = torch.cat((inputs, filled), dim=1)
outputs = conv(xinputs)
selecteds = [outputs[:,:oC] for oC in choices]
return selecteds
iC = conv.in_channels
fill_size = list(inputs.size())
fill_size[1] = iC - fill_size[1]
filled = torch.zeros(fill_size, device=inputs.device)
xinputs = torch.cat((inputs, filled), dim=1)
outputs = conv(xinputs)
selecteds = [outputs[:, :oC] for oC in choices]
return selecteds
class ConvBNReLU(nn.Module):
num_conv = 1
def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu):
super(ConvBNReLU, self).__init__()
self.InShape = None
self.OutShape = None
self.choices = get_choices(nOut)
self.register_buffer('choices_tensor', torch.Tensor( self.choices ))
num_conv = 1
if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
else : self.avg = None
self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias)
#if has_bn : self.bn = nn.BatchNorm2d(nOut)
#else : self.bn = None
self.has_bn = has_bn
self.BNs = nn.ModuleList()
for i, _out in enumerate(self.choices):
self.BNs.append(nn.BatchNorm2d(_out))
if has_relu: self.relu = nn.ReLU(inplace=True)
else : self.relu = None
self.in_dim = nIn
self.out_dim = nOut
self.search_mode = 'basic'
def __init__(
self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu
):
super(ConvBNReLU, self).__init__()
self.InShape = None
self.OutShape = None
self.choices = get_choices(nOut)
self.register_buffer("choices_tensor", torch.Tensor(self.choices))
def get_flops(self, channels, check_range=True, divide=1):
iC, oC = channels
if check_range: assert iC <= self.conv.in_channels and oC <= self.conv.out_channels, '{:} vs {:} | {:} vs {:}'.format(iC, self.conv.in_channels, oC, self.conv.out_channels)
assert isinstance(self.InShape, tuple) and len(self.InShape) == 2, 'invalid in-shape : {:}'.format(self.InShape)
assert isinstance(self.OutShape, tuple) and len(self.OutShape) == 2, 'invalid out-shape : {:}'.format(self.OutShape)
#conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
conv_per_position_flops = (self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups)
all_positions = self.OutShape[0] * self.OutShape[1]
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
if self.conv.bias is not None: flops += all_positions / divide
return flops
if has_avg:
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
else:
self.avg = None
self.conv = nn.Conv2d(
nIn,
nOut,
kernel_size=kernel,
stride=stride,
padding=padding,
dilation=1,
groups=1,
bias=bias,
)
# if has_bn : self.bn = nn.BatchNorm2d(nOut)
# else : self.bn = None
self.has_bn = has_bn
self.BNs = nn.ModuleList()
for i, _out in enumerate(self.choices):
self.BNs.append(nn.BatchNorm2d(_out))
if has_relu:
self.relu = nn.ReLU(inplace=True)
else:
self.relu = None
self.in_dim = nIn
self.out_dim = nOut
self.search_mode = "basic"
def get_range(self):
return [self.choices]
def get_flops(self, channels, check_range=True, divide=1):
iC, oC = channels
if check_range:
assert (
iC <= self.conv.in_channels and oC <= self.conv.out_channels
), "{:} vs {:} | {:} vs {:}".format(
iC, self.conv.in_channels, oC, self.conv.out_channels
)
assert (
isinstance(self.InShape, tuple) and len(self.InShape) == 2
), "invalid in-shape : {:}".format(self.InShape)
assert (
isinstance(self.OutShape, tuple) and len(self.OutShape) == 2
), "invalid out-shape : {:}".format(self.OutShape)
# conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
conv_per_position_flops = (
self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups
)
all_positions = self.OutShape[0] * self.OutShape[1]
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
if self.conv.bias is not None:
flops += all_positions / divide
return flops
def forward(self, inputs):
if self.search_mode == 'basic':
return self.basic_forward(inputs)
elif self.search_mode == 'search':
return self.search_forward(inputs)
else:
raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
def get_range(self):
return [self.choices]
def search_forward(self, tuple_inputs):
assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) )
inputs, expected_inC, probability, index, prob = tuple_inputs
index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob)
probability = torch.squeeze(probability)
assert len(index) == 2, 'invalid length : {:}'.format(index)
# compute expected flop
#coordinates = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability)
expected_outC = (self.choices_tensor * probability).sum()
expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6)
if self.avg : out = self.avg( inputs )
else : out = inputs
# convolutional layer
out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index])
out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)]
# merge
out_channel = max([x.size(1) for x in out_bns])
outA = ChannelWiseInter(out_bns[0], out_channel)
outB = ChannelWiseInter(out_bns[1], out_channel)
out = outA * prob[0] + outB * prob[1]
#out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1])
def forward(self, inputs):
if self.search_mode == "basic":
return self.basic_forward(inputs)
elif self.search_mode == "search":
return self.search_forward(inputs)
else:
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
if self.relu: out = self.relu( out )
else : out = out
return out, expected_outC, expected_flop
def search_forward(self, tuple_inputs):
assert (
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
), "invalid type input : {:}".format(type(tuple_inputs))
inputs, expected_inC, probability, index, prob = tuple_inputs
index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob)
probability = torch.squeeze(probability)
assert len(index) == 2, "invalid length : {:}".format(index)
# compute expected flop
# coordinates = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability)
expected_outC = (self.choices_tensor * probability).sum()
expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6)
if self.avg:
out = self.avg(inputs)
else:
out = inputs
# convolutional layer
out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index])
out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)]
# merge
out_channel = max([x.size(1) for x in out_bns])
outA = ChannelWiseInter(out_bns[0], out_channel)
outB = ChannelWiseInter(out_bns[1], out_channel)
out = outA * prob[0] + outB * prob[1]
# out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1])
def basic_forward(self, inputs):
if self.avg : out = self.avg( inputs )
else : out = inputs
conv = self.conv( out )
if self.has_bn:out= self.BNs[-1]( conv )
else : out = conv
if self.relu: out = self.relu( out )
else : out = out
if self.InShape is None:
self.InShape = (inputs.size(-2), inputs.size(-1))
self.OutShape = (out.size(-2) , out.size(-1))
return out
if self.relu:
out = self.relu(out)
else:
out = out
return out, expected_outC, expected_flop
def basic_forward(self, inputs):
if self.avg:
out = self.avg(inputs)
else:
out = inputs
conv = self.conv(out)
if self.has_bn:
out = self.BNs[-1](conv)
else:
out = conv
if self.relu:
out = self.relu(out)
else:
out = out
if self.InShape is None:
self.InShape = (inputs.size(-2), inputs.size(-1))
self.OutShape = (out.size(-2), out.size(-1))
return out
class SimBlock(nn.Module):
expansion = 1
num_conv = 1
def __init__(self, inplanes, planes, stride):
super(SimBlock, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
self.conv = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
if stride == 2:
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
elif inplanes != planes:
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
else:
self.downsample = None
self.out_dim = planes
self.search_mode = 'basic'
expansion = 1
num_conv = 1
def get_range(self):
return self.conv.get_range()
def __init__(self, inplanes, planes, stride):
super(SimBlock, self).__init__()
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
self.conv = ConvBNReLU(
inplanes,
planes,
3,
stride,
1,
False,
has_avg=False,
has_bn=True,
has_relu=True,
)
if stride == 2:
self.downsample = ConvBNReLU(
inplanes,
planes,
1,
1,
0,
False,
has_avg=True,
has_bn=False,
has_relu=False,
)
elif inplanes != planes:
self.downsample = ConvBNReLU(
inplanes,
planes,
1,
1,
0,
False,
has_avg=False,
has_bn=True,
has_relu=False,
)
else:
self.downsample = None
self.out_dim = planes
self.search_mode = "basic"
def get_flops(self, channels):
assert len(channels) == 2, 'invalid channels : {:}'.format(channels)
flop_A = self.conv.get_flops([channels[0], channels[1]])
if hasattr(self.downsample, 'get_flops'):
flop_C = self.downsample.get_flops([channels[0], channels[-1]])
else:
flop_C = 0
if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train
flop_C = channels[0] * channels[-1] * self.conv.OutShape[0] * self.conv.OutShape[1]
return flop_A + flop_C
def get_range(self):
return self.conv.get_range()
def forward(self, inputs):
if self.search_mode == 'basic' : return self.basic_forward(inputs)
elif self.search_mode == 'search': return self.search_forward(inputs)
else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
def get_flops(self, channels):
assert len(channels) == 2, "invalid channels : {:}".format(channels)
flop_A = self.conv.get_flops([channels[0], channels[1]])
if hasattr(self.downsample, "get_flops"):
flop_C = self.downsample.get_flops([channels[0], channels[-1]])
else:
flop_C = 0
if (
channels[0] != channels[-1] and self.downsample is None
): # this short-cut will be added during the infer-train
flop_C = (
channels[0]
* channels[-1]
* self.conv.OutShape[0]
* self.conv.OutShape[1]
)
return flop_A + flop_C
def search_forward(self, tuple_inputs):
assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) )
inputs, expected_inC, probability, indexes, probs = tuple_inputs
assert indexes.size(0) == 1 and probs.size(0) == 1 and probability.size(0) == 1, 'invalid size : {:}, {:}, {:}'.format(indexes.size(), probs.size(), probability.size())
out, expected_next_inC, expected_flop = self.conv( (inputs, expected_inC , probability[0], indexes[0], probs[0]) )
if self.downsample is not None:
residual, _, expected_flop_c = self.downsample( (inputs, expected_inC , probability[-1], indexes[-1], probs[-1]) )
else:
residual, expected_flop_c = inputs, 0
out = additive_func(residual, out)
return nn.functional.relu(out, inplace=True), expected_next_inC, sum([expected_flop, expected_flop_c])
def forward(self, inputs):
if self.search_mode == "basic":
return self.basic_forward(inputs)
elif self.search_mode == "search":
return self.search_forward(inputs)
else:
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
def basic_forward(self, inputs):
basicblock = self.conv(inputs)
if self.downsample is not None: residual = self.downsample(inputs)
else : residual = inputs
out = additive_func(residual, basicblock)
return nn.functional.relu(out, inplace=True)
def search_forward(self, tuple_inputs):
assert (
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
), "invalid type input : {:}".format(type(tuple_inputs))
inputs, expected_inC, probability, indexes, probs = tuple_inputs
assert (
indexes.size(0) == 1 and probs.size(0) == 1 and probability.size(0) == 1
), "invalid size : {:}, {:}, {:}".format(
indexes.size(), probs.size(), probability.size()
)
out, expected_next_inC, expected_flop = self.conv(
(inputs, expected_inC, probability[0], indexes[0], probs[0])
)
if self.downsample is not None:
residual, _, expected_flop_c = self.downsample(
(inputs, expected_inC, probability[-1], indexes[-1], probs[-1])
)
else:
residual, expected_flop_c = inputs, 0
out = additive_func(residual, out)
return (
nn.functional.relu(out, inplace=True),
expected_next_inC,
sum([expected_flop, expected_flop_c]),
)
def basic_forward(self, inputs):
basicblock = self.conv(inputs)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = additive_func(residual, basicblock)
return nn.functional.relu(out, inplace=True)
class SearchWidthSimResNet(nn.Module):
def __init__(self, depth, num_classes):
super(SearchWidthSimResNet, self).__init__()
def __init__(self, depth, num_classes):
super(SearchWidthSimResNet, self).__init__()
assert (
depth - 2
) % 3 == 0, "depth should be one of 5, 8, 11, 14, ... instead of {:}".format(
depth
)
layer_blocks = (depth - 2) // 3
self.message = (
"SearchWidthSimResNet : Depth : {:} , Layers for each block : {:}".format(
depth, layer_blocks
)
)
self.num_classes = num_classes
self.channels = [16]
self.layers = nn.ModuleList(
[
ConvBNReLU(
3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True
)
]
)
self.InShape = None
for stage in range(3):
for iL in range(layer_blocks):
iC = self.channels[-1]
planes = 16 * (2 ** stage)
stride = 2 if stage > 0 and iL == 0 else 1
module = SimBlock(iC, planes, stride)
self.channels.append(module.out_dim)
self.layers.append(module)
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(
stage,
iL,
layer_blocks,
len(self.layers) - 1,
iC,
module.out_dim,
stride,
)
assert (depth - 2) % 3 == 0, 'depth should be one of 5, 8, 11, 14, ... instead of {:}'.format(depth)
layer_blocks = (depth - 2) // 3
self.message = 'SearchWidthSimResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks)
self.num_classes = num_classes
self.channels = [16]
self.layers = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] )
self.InShape = None
for stage in range(3):
for iL in range(layer_blocks):
iC = self.channels[-1]
planes = 16 * (2**stage)
stride = 2 if stage > 0 and iL == 0 else 1
module = SimBlock(iC, planes, stride)
self.channels.append( module.out_dim )
self.layers.append ( module )
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride)
self.avgpool = nn.AvgPool2d(8)
self.classifier = nn.Linear(module.out_dim, num_classes)
self.InShape = None
self.tau = -1
self.search_mode = 'basic'
#assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
# parameters for width
self.Ranges = []
self.layer2indexRange = []
for i, layer in enumerate(self.layers):
start_index = len(self.Ranges)
self.Ranges += layer.get_range()
self.layer2indexRange.append( (start_index, len(self.Ranges)) )
assert len(self.Ranges) + 1 == depth, 'invalid depth check {:} vs {:}'.format(len(self.Ranges) + 1, depth)
self.avgpool = nn.AvgPool2d(8)
self.classifier = nn.Linear(module.out_dim, num_classes)
self.InShape = None
self.tau = -1
self.search_mode = "basic"
# assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
self.register_parameter('width_attentions', nn.Parameter(torch.Tensor(len(self.Ranges), get_choices(None))))
nn.init.normal_(self.width_attentions, 0, 0.01)
self.apply(initialize_resnet)
# parameters for width
self.Ranges = []
self.layer2indexRange = []
for i, layer in enumerate(self.layers):
start_index = len(self.Ranges)
self.Ranges += layer.get_range()
self.layer2indexRange.append((start_index, len(self.Ranges)))
assert len(self.Ranges) + 1 == depth, "invalid depth check {:} vs {:}".format(
len(self.Ranges) + 1, depth
)
def arch_parameters(self):
return [self.width_attentions]
self.register_parameter(
"width_attentions",
nn.Parameter(torch.Tensor(len(self.Ranges), get_choices(None))),
)
nn.init.normal_(self.width_attentions, 0, 0.01)
self.apply(initialize_resnet)
def base_parameters(self):
return list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters())
def arch_parameters(self):
return [self.width_attentions]
def get_flop(self, mode, config_dict, extra_info):
if config_dict is not None: config_dict = config_dict.copy()
#weights = [F.softmax(x, dim=0) for x in self.width_attentions]
channels = [3]
for i, weight in enumerate(self.width_attentions):
if mode == 'genotype':
def base_parameters(self):
return (
list(self.layers.parameters())
+ list(self.avgpool.parameters())
+ list(self.classifier.parameters())
)
def get_flop(self, mode, config_dict, extra_info):
if config_dict is not None:
config_dict = config_dict.copy()
# weights = [F.softmax(x, dim=0) for x in self.width_attentions]
channels = [3]
for i, weight in enumerate(self.width_attentions):
if mode == "genotype":
with torch.no_grad():
probe = nn.functional.softmax(weight, dim=0)
C = self.Ranges[i][torch.argmax(probe).item()]
elif mode == "max":
C = self.Ranges[i][-1]
elif mode == "fix":
C = int(math.sqrt(extra_info) * self.Ranges[i][-1])
elif mode == "random":
assert isinstance(extra_info, float), "invalid extra_info : {:}".format(
extra_info
)
with torch.no_grad():
prob = nn.functional.softmax(weight, dim=0)
approximate_C = int(math.sqrt(extra_info) * self.Ranges[i][-1])
for j in range(prob.size(0)):
prob[j] = 1 / (
abs(j - (approximate_C - self.Ranges[i][j])) + 0.2
)
C = self.Ranges[i][torch.multinomial(prob, 1, False).item()]
else:
raise ValueError("invalid mode : {:}".format(mode))
channels.append(C)
flop = 0
for i, layer in enumerate(self.layers):
s, e = self.layer2indexRange[i]
xchl = tuple(channels[s : e + 1])
flop += layer.get_flops(xchl)
# the last fc layer
flop += channels[-1] * self.classifier.out_features
if config_dict is None:
return flop / 1e6
else:
config_dict["xchannels"] = channels
config_dict["super_type"] = "infer-width"
config_dict["estimated_FLOP"] = flop / 1e6
return flop / 1e6, config_dict
def get_arch_info(self):
string = "for width, there are {:} attention probabilities.".format(
len(self.width_attentions)
)
discrepancy = []
with torch.no_grad():
probe = nn.functional.softmax(weight, dim=0)
C = self.Ranges[i][ torch.argmax(probe).item() ]
elif mode == 'max':
C = self.Ranges[i][-1]
elif mode == 'fix':
C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] )
elif mode == 'random':
assert isinstance(extra_info, float), 'invalid extra_info : {:}'.format(extra_info)
for i, att in enumerate(self.width_attentions):
prob = nn.functional.softmax(att, dim=0)
prob = prob.cpu()
selc = prob.argmax().item()
prob = prob.tolist()
prob = ["{:.3f}".format(x) for x in prob]
xstring = "{:03d}/{:03d}-th : {:}".format(
i, len(self.width_attentions), " ".join(prob)
)
logt = ["{:.3f}".format(x) for x in att.cpu().tolist()]
xstring += " || {:52s}".format(" ".join(logt))
prob = sorted([float(x) for x in prob])
disc = prob[-1] - prob[-2]
xstring += " || dis={:.2f} || select={:}/{:}".format(
disc, selc, len(prob)
)
discrepancy.append(disc)
string += "\n{:}".format(xstring)
return string, discrepancy
def set_tau(self, tau_max, tau_min, epoch_ratio):
assert (
epoch_ratio >= 0 and epoch_ratio <= 1
), "invalid epoch-ratio : {:}".format(epoch_ratio)
tau = tau_min + (tau_max - tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
self.tau = tau
def get_message(self):
return self.message
def forward(self, inputs):
if self.search_mode == "basic":
return self.basic_forward(inputs)
elif self.search_mode == "search":
return self.search_forward(inputs)
else:
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
def search_forward(self, inputs):
flop_probs = nn.functional.softmax(self.width_attentions, dim=1)
selected_widths, selected_probs = select2withP(self.width_attentions, self.tau)
with torch.no_grad():
prob = nn.functional.softmax(weight, dim=0)
approximate_C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] )
for j in range(prob.size(0)):
prob[j] = 1 / (abs(j - (approximate_C-self.Ranges[i][j])) + 0.2)
C = self.Ranges[i][ torch.multinomial(prob, 1, False).item() ]
else:
raise ValueError('invalid mode : {:}'.format(mode))
channels.append( C )
flop = 0
for i, layer in enumerate(self.layers):
s, e = self.layer2indexRange[i]
xchl = tuple( channels[s:e+1] )
flop+= layer.get_flops(xchl)
# the last fc layer
flop += channels[-1] * self.classifier.out_features
if config_dict is None:
return flop / 1e6
else:
config_dict['xchannels'] = channels
config_dict['super_type'] = 'infer-width'
config_dict['estimated_FLOP'] = flop / 1e6
return flop / 1e6, config_dict
selected_widths = selected_widths.cpu()
def get_arch_info(self):
string = "for width, there are {:} attention probabilities.".format(len(self.width_attentions))
discrepancy = []
with torch.no_grad():
for i, att in enumerate(self.width_attentions):
prob = nn.functional.softmax(att, dim=0)
prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist()
prob = ['{:.3f}'.format(x) for x in prob]
xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.width_attentions), ' '.join(prob))
logt = ['{:.3f}'.format(x) for x in att.cpu().tolist()]
xstring += ' || {:52s}'.format(' '.join(logt))
prob = sorted( [float(x) for x in prob] )
disc = prob[-1] - prob[-2]
xstring += ' || dis={:.2f} || select={:}/{:}'.format(disc, selc, len(prob))
discrepancy.append( disc )
string += '\n{:}'.format(xstring)
return string, discrepancy
x, last_channel_idx, expected_inC, flops = inputs, 0, 3, []
for i, layer in enumerate(self.layers):
selected_w_index = selected_widths[
last_channel_idx : last_channel_idx + layer.num_conv
]
selected_w_probs = selected_probs[
last_channel_idx : last_channel_idx + layer.num_conv
]
layer_prob = flop_probs[
last_channel_idx : last_channel_idx + layer.num_conv
]
x, expected_inC, expected_flop = layer(
(x, expected_inC, layer_prob, selected_w_index, selected_w_probs)
)
last_channel_idx += layer.num_conv
flops.append(expected_flop)
flops.append(expected_inC * (self.classifier.out_features * 1.0 / 1e6))
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = linear_forward(features, self.classifier)
return logits, torch.stack([sum(flops)])
def set_tau(self, tau_max, tau_min, epoch_ratio):
assert epoch_ratio >= 0 and epoch_ratio <= 1, 'invalid epoch-ratio : {:}'.format(epoch_ratio)
tau = tau_min + (tau_max-tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
self.tau = tau
def get_message(self):
return self.message
def forward(self, inputs):
if self.search_mode == 'basic':
return self.basic_forward(inputs)
elif self.search_mode == 'search':
return self.search_forward(inputs)
else:
raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
def search_forward(self, inputs):
flop_probs = nn.functional.softmax(self.width_attentions, dim=1)
selected_widths, selected_probs = select2withP(self.width_attentions, self.tau)
with torch.no_grad():
selected_widths = selected_widths.cpu()
x, last_channel_idx, expected_inC, flops = inputs, 0, 3, []
for i, layer in enumerate(self.layers):
selected_w_index = selected_widths[last_channel_idx: last_channel_idx+layer.num_conv]
selected_w_probs = selected_probs[last_channel_idx: last_channel_idx+layer.num_conv]
layer_prob = flop_probs[last_channel_idx: last_channel_idx+layer.num_conv]
x, expected_inC, expected_flop = layer( (x, expected_inC, layer_prob, selected_w_index, selected_w_probs) )
last_channel_idx += layer.num_conv
flops.append( expected_flop )
flops.append( expected_inC * (self.classifier.out_features*1.0/1e6) )
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = linear_forward(features, self.classifier)
return logits, torch.stack( [sum(flops)] )
def basic_forward(self, inputs):
if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1))
x = inputs
for i, layer in enumerate(self.layers):
x = layer( x )
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = self.classifier(features)
return features, logits
def basic_forward(self, inputs):
if self.InShape is None:
self.InShape = (inputs.size(-2), inputs.size(-1))
x = inputs
for i, layer in enumerate(self.layers):
x = layer(x)
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = self.classifier(features)
return features, logits

View File

@@ -6,106 +6,123 @@ import torch.nn as nn
def select2withP(logits, tau, just_prob=False, num=2, eps=1e-7):
if tau <= 0:
new_logits = logits
probs = nn.functional.softmax(new_logits, dim=1)
else :
while True: # a trick to avoid the gumbels bug
gumbels = -torch.empty_like(logits).exponential_().log()
new_logits = (logits.log_softmax(dim=1) + gumbels) / tau
probs = nn.functional.softmax(new_logits, dim=1)
if (not torch.isinf(gumbels).any()) and (not torch.isinf(probs).any()) and (not torch.isnan(probs).any()): break
if tau <= 0:
new_logits = logits
probs = nn.functional.softmax(new_logits, dim=1)
else:
while True: # a trick to avoid the gumbels bug
gumbels = -torch.empty_like(logits).exponential_().log()
new_logits = (logits.log_softmax(dim=1) + gumbels) / tau
probs = nn.functional.softmax(new_logits, dim=1)
if (
(not torch.isinf(gumbels).any())
and (not torch.isinf(probs).any())
and (not torch.isnan(probs).any())
):
break
if just_prob: return probs
if just_prob:
return probs
#with torch.no_grad(): # add eps for unexpected torch error
# probs = nn.functional.softmax(new_logits, dim=1)
# selected_index = torch.multinomial(probs + eps, 2, False)
with torch.no_grad(): # add eps for unexpected torch error
probs = probs.cpu()
selected_index = torch.multinomial(probs + eps, num, False).to(logits.device)
selected_logit = torch.gather(new_logits, 1, selected_index)
selcted_probs = nn.functional.softmax(selected_logit, dim=1)
return selected_index, selcted_probs
# with torch.no_grad(): # add eps for unexpected torch error
# probs = nn.functional.softmax(new_logits, dim=1)
# selected_index = torch.multinomial(probs + eps, 2, False)
with torch.no_grad(): # add eps for unexpected torch error
probs = probs.cpu()
selected_index = torch.multinomial(probs + eps, num, False).to(logits.device)
selected_logit = torch.gather(new_logits, 1, selected_index)
selcted_probs = nn.functional.softmax(selected_logit, dim=1)
return selected_index, selcted_probs
def ChannelWiseInter(inputs, oC, mode='v2'):
if mode == 'v1':
return ChannelWiseInterV1(inputs, oC)
elif mode == 'v2':
return ChannelWiseInterV2(inputs, oC)
else:
raise ValueError('invalid mode : {:}'.format(mode))
def ChannelWiseInter(inputs, oC, mode="v2"):
if mode == "v1":
return ChannelWiseInterV1(inputs, oC)
elif mode == "v2":
return ChannelWiseInterV2(inputs, oC)
else:
raise ValueError("invalid mode : {:}".format(mode))
def ChannelWiseInterV1(inputs, oC):
assert inputs.dim() == 4, 'invalid dimension : {:}'.format(inputs.size())
def start_index(a, b, c):
return int( math.floor(float(a * c) / b) )
def end_index(a, b, c):
return int( math.ceil(float((a + 1) * c) / b) )
batch, iC, H, W = inputs.size()
outputs = torch.zeros((batch, oC, H, W), dtype=inputs.dtype, device=inputs.device)
if iC == oC: return inputs
for ot in range(oC):
istartT, iendT = start_index(ot, oC, iC), end_index(ot, oC, iC)
values = inputs[:, istartT:iendT].mean(dim=1)
outputs[:, ot, :, :] = values
return outputs
assert inputs.dim() == 4, "invalid dimension : {:}".format(inputs.size())
def start_index(a, b, c):
return int(math.floor(float(a * c) / b))
def end_index(a, b, c):
return int(math.ceil(float((a + 1) * c) / b))
batch, iC, H, W = inputs.size()
outputs = torch.zeros((batch, oC, H, W), dtype=inputs.dtype, device=inputs.device)
if iC == oC:
return inputs
for ot in range(oC):
istartT, iendT = start_index(ot, oC, iC), end_index(ot, oC, iC)
values = inputs[:, istartT:iendT].mean(dim=1)
outputs[:, ot, :, :] = values
return outputs
def ChannelWiseInterV2(inputs, oC):
assert inputs.dim() == 4, 'invalid dimension : {:}'.format(inputs.size())
batch, C, H, W = inputs.size()
if C == oC: return inputs
else : return nn.functional.adaptive_avg_pool3d(inputs, (oC,H,W))
#inputs_5D = inputs.view(batch, 1, C, H, W)
#otputs_5D = nn.functional.interpolate(inputs_5D, (oC,H,W), None, 'area', None)
#otputs = otputs_5D.view(batch, oC, H, W)
#otputs_5D = nn.functional.interpolate(inputs_5D, (oC,H,W), None, 'trilinear', False)
#return otputs
assert inputs.dim() == 4, "invalid dimension : {:}".format(inputs.size())
batch, C, H, W = inputs.size()
if C == oC:
return inputs
else:
return nn.functional.adaptive_avg_pool3d(inputs, (oC, H, W))
# inputs_5D = inputs.view(batch, 1, C, H, W)
# otputs_5D = nn.functional.interpolate(inputs_5D, (oC,H,W), None, 'area', None)
# otputs = otputs_5D.view(batch, oC, H, W)
# otputs_5D = nn.functional.interpolate(inputs_5D, (oC,H,W), None, 'trilinear', False)
# return otputs
def linear_forward(inputs, linear):
if linear is None: return inputs
iC = inputs.size(1)
weight = linear.weight[:, :iC]
if linear.bias is None: bias = None
else : bias = linear.bias
return nn.functional.linear(inputs, weight, bias)
if linear is None:
return inputs
iC = inputs.size(1)
weight = linear.weight[:, :iC]
if linear.bias is None:
bias = None
else:
bias = linear.bias
return nn.functional.linear(inputs, weight, bias)
def get_width_choices(nOut):
xsrange = [0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
if nOut is None:
return len(xsrange)
else:
Xs = [int(nOut * i) for i in xsrange]
#xs = [ int(nOut * i // 10) for i in range(2, 11)]
#Xs = [x for i, x in enumerate(xs) if i+1 == len(xs) or xs[i+1] > x+1]
Xs = sorted( list( set(Xs) ) )
return tuple(Xs)
xsrange = [0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
if nOut is None:
return len(xsrange)
else:
Xs = [int(nOut * i) for i in xsrange]
# xs = [ int(nOut * i // 10) for i in range(2, 11)]
# Xs = [x for i, x in enumerate(xs) if i+1 == len(xs) or xs[i+1] > x+1]
Xs = sorted(list(set(Xs)))
return tuple(Xs)
def get_depth_choices(nDepth):
if nDepth is None:
return 3
else:
assert nDepth >= 3, 'nDepth should be greater than 2 vs {:}'.format(nDepth)
if nDepth == 1 : return (1, 1, 1)
elif nDepth == 2: return (1, 1, 2)
elif nDepth >= 3:
return (nDepth//3, nDepth*2//3, nDepth)
if nDepth is None:
return 3
else:
raise ValueError('invalid Depth : {:}'.format(nDepth))
assert nDepth >= 3, "nDepth should be greater than 2 vs {:}".format(nDepth)
if nDepth == 1:
return (1, 1, 1)
elif nDepth == 2:
return (1, 1, 2)
elif nDepth >= 3:
return (nDepth // 3, nDepth * 2 // 3, nDepth)
else:
raise ValueError("invalid Depth : {:}".format(nDepth))
def drop_path(x, drop_prob):
if drop_prob > 0.:
keep_prob = 1. - drop_prob
mask = x.new_zeros(x.size(0), 1, 1, 1)
mask = mask.bernoulli_(keep_prob)
x = x * (mask / keep_prob)
#x.div_(keep_prob)
#x.mul_(mask)
return x
if drop_prob > 0.0:
keep_prob = 1.0 - drop_prob
mask = x.new_zeros(x.size(0), 1, 1, 1)
mask = mask.bernoulli_(keep_prob)
x = x * (mask / keep_prob)
# x.div_(keep_prob)
# x.mul_(mask)
return x

View File

@@ -3,7 +3,7 @@
##################################################
from .SearchCifarResNet_width import SearchWidthCifarResNet
from .SearchCifarResNet_depth import SearchDepthCifarResNet
from .SearchCifarResNet import SearchShapeCifarResNet
from .SearchSimResNet_width import SearchWidthSimResNet
from .SearchImagenetResNet import SearchShapeImagenetResNet
from .SearchCifarResNet import SearchShapeCifarResNet
from .SearchSimResNet_width import SearchWidthSimResNet
from .SearchImagenetResNet import SearchShapeImagenetResNet
from .generic_size_tiny_cell_model import GenericNAS301Model

View File

@@ -15,152 +15,195 @@ from models.shape_searchs.SoftSelect import select2withP, ChannelWiseInter
class GenericNAS301Model(nn.Module):
def __init__(
self,
candidate_Cs: List[int],
max_num_Cs: int,
genotype: Any,
num_classes: int,
affine: bool,
track_running_stats: bool,
):
super(GenericNAS301Model, self).__init__()
self._max_num_Cs = max_num_Cs
self._candidate_Cs = candidate_Cs
if max_num_Cs % 3 != 2:
raise ValueError("invalid number of layers : {:}".format(max_num_Cs))
self._num_stage = N = max_num_Cs // 3
self._max_C = max(candidate_Cs)
def __init__(self, candidate_Cs: List[int], max_num_Cs: int, genotype: Any, num_classes: int, affine: bool, track_running_stats: bool):
super(GenericNAS301Model, self).__init__()
self._max_num_Cs = max_num_Cs
self._candidate_Cs = candidate_Cs
if max_num_Cs % 3 != 2:
raise ValueError('invalid number of layers : {:}'.format(max_num_Cs))
self._num_stage = N = max_num_Cs // 3
self._max_C = max(candidate_Cs)
stem = nn.Sequential(
nn.Conv2d(3, self._max_C, kernel_size=3, padding=1, bias=not affine),
nn.BatchNorm2d(
self._max_C, affine=affine, track_running_stats=track_running_stats
),
)
stem = nn.Sequential(
nn.Conv2d(3, self._max_C, kernel_size=3, padding=1, bias=not affine),
nn.BatchNorm2d(self._max_C, affine=affine, track_running_stats=track_running_stats))
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
c_prev = self._max_C
self._cells = nn.ModuleList()
self._cells.append(stem)
for index, reduction in enumerate(layer_reductions):
if reduction:
cell = ResNetBasicblock(c_prev, self._max_C, 2, True)
else:
cell = InferCell(
genotype, c_prev, self._max_C, 1, affine, track_running_stats
)
self._cells.append(cell)
c_prev = cell.out_dim
self._num_layer = len(self._cells)
c_prev = self._max_C
self._cells = nn.ModuleList()
self._cells.append(stem)
for index, reduction in enumerate(layer_reductions):
if reduction : cell = ResNetBasicblock(c_prev, self._max_C, 2, True)
else : cell = InferCell(genotype, c_prev, self._max_C, 1, affine, track_running_stats)
self._cells.append(cell)
c_prev = cell.out_dim
self._num_layer = len(self._cells)
self.lastact = nn.Sequential(
nn.BatchNorm2d(
c_prev, affine=affine, track_running_stats=track_running_stats
),
nn.ReLU(inplace=True),
)
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(c_prev, num_classes)
# algorithm related
self.register_buffer("_tau", torch.zeros(1))
self._algo = None
self._warmup_ratio = None
self.lastact = nn.Sequential(nn.BatchNorm2d(c_prev, affine=affine, track_running_stats=track_running_stats), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(c_prev, num_classes)
# algorithm related
self.register_buffer('_tau', torch.zeros(1))
self._algo = None
self._warmup_ratio = None
def set_algo(self, algo: Text):
# used for searching
assert self._algo is None, "This functioin can only be called once."
assert algo in ["mask_gumbel", "mask_rl", "tas"], "invalid algo : {:}".format(
algo
)
self._algo = algo
self._arch_parameters = nn.Parameter(
1e-3 * torch.randn(self._max_num_Cs, len(self._candidate_Cs))
)
# if algo == 'mask_gumbel' or algo == 'mask_rl':
self.register_buffer(
"_masks", torch.zeros(len(self._candidate_Cs), max(self._candidate_Cs))
)
for i in range(len(self._candidate_Cs)):
self._masks.data[i, : self._candidate_Cs[i]] = 1
def set_algo(self, algo: Text):
# used for searching
assert self._algo is None, 'This functioin can only be called once.'
assert algo in ['mask_gumbel', 'mask_rl', 'tas'], 'invalid algo : {:}'.format(algo)
self._algo = algo
self._arch_parameters = nn.Parameter(1e-3*torch.randn(self._max_num_Cs, len(self._candidate_Cs)))
# if algo == 'mask_gumbel' or algo == 'mask_rl':
self.register_buffer('_masks', torch.zeros(len(self._candidate_Cs), max(self._candidate_Cs)))
for i in range(len(self._candidate_Cs)):
self._masks.data[i, :self._candidate_Cs[i]] = 1
@property
def tau(self):
return self._tau
@property
def tau(self):
return self._tau
def set_tau(self, tau):
self._tau.data[:] = tau
def set_tau(self, tau):
self._tau.data[:] = tau
@property
def warmup_ratio(self):
return self._warmup_ratio
@property
def warmup_ratio(self):
return self._warmup_ratio
def set_warmup_ratio(self, ratio: float):
self._warmup_ratio = ratio
def set_warmup_ratio(self, ratio: float):
self._warmup_ratio = ratio
@property
def weights(self):
xlist = list(self._cells.parameters())
xlist+= list(self.lastact.parameters())
xlist+= list(self.global_pooling.parameters())
xlist+= list(self.classifier.parameters())
return xlist
@property
def weights(self):
xlist = list(self._cells.parameters())
xlist += list(self.lastact.parameters())
xlist += list(self.global_pooling.parameters())
xlist += list(self.classifier.parameters())
return xlist
@property
def alphas(self):
return [self._arch_parameters]
@property
def alphas(self):
return [self._arch_parameters]
def show_alphas(self):
with torch.no_grad():
return 'arch-parameters :\n{:}'.format(nn.functional.softmax(self._arch_parameters, dim=-1).cpu())
@property
def random(self):
cs = []
for i in range(self._max_num_Cs):
index = random.randint(0, len(self._candidate_Cs)-1)
cs.append(str(self._candidate_Cs[index]))
return ':'.join(cs)
@property
def genotype(self):
cs = []
for i in range(self._max_num_Cs):
with torch.no_grad():
index = self._arch_parameters[i].argmax().item()
cs.append(str(self._candidate_Cs[index]))
return ':'.join(cs)
def get_message(self) -> Text:
string = self.extra_repr()
for i, cell in enumerate(self._cells):
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self._cells), cell.extra_repr())
return string
def extra_repr(self):
return ('{name}(candidates={_candidate_Cs}, num={_max_num_Cs}, N={_num_stage}, L={_num_layer})'.format(name=self.__class__.__name__, **self.__dict__))
def forward(self, inputs):
feature = inputs
log_probs = []
for i, cell in enumerate(self._cells):
feature = cell(feature)
# apply different searching algorithms
idx = max(0, i-1)
if self._warmup_ratio is not None:
if random.random() < self._warmup_ratio:
mask = self._masks[-1]
else:
mask = self._masks[random.randint(0, len(self._masks)-1)]
feature = feature * mask.view(1, -1, 1, 1)
elif self._algo == 'mask_gumbel':
weights = nn.functional.gumbel_softmax(self._arch_parameters[idx:idx+1], tau=self.tau, dim=-1)
mask = torch.matmul(weights, self._masks).view(1, -1, 1, 1)
feature = feature * mask
elif self._algo == 'tas':
selected_cs, selected_probs = select2withP(self._arch_parameters[idx:idx+1], self.tau, num=2)
def show_alphas(self):
with torch.no_grad():
i1, i2 = selected_cs.cpu().view(-1).tolist()
c1, c2 = self._candidate_Cs[i1], self._candidate_Cs[i2]
out_channel = max(c1, c2)
out1 = ChannelWiseInter(feature[:, :c1], out_channel)
out2 = ChannelWiseInter(feature[:, :c2], out_channel)
out = out1 * selected_probs[0, 0] + out2 * selected_probs[0, 1]
if feature.shape[1] == out.shape[1]:
feature = out
else:
miss = torch.zeros(feature.shape[0], feature.shape[1]-out.shape[1], feature.shape[2], feature.shape[3], device=feature.device)
feature = torch.cat((out, miss), dim=1)
elif self._algo == 'mask_rl':
prob = nn.functional.softmax(self._arch_parameters[idx:idx+1], dim=-1)
dist = torch.distributions.Categorical(prob)
action = dist.sample()
log_probs.append(dist.log_prob(action))
mask = self._masks[action.item()].view(1, -1, 1, 1)
feature = feature * mask
else:
raise ValueError('invalid algorithm : {:}'.format(self._algo))
return "arch-parameters :\n{:}".format(
nn.functional.softmax(self._arch_parameters, dim=-1).cpu()
)
out = self.lastact(feature)
out = self.global_pooling(out)
out = out.view(out.size(0), -1)
logits = self.classifier(out)
@property
def random(self):
cs = []
for i in range(self._max_num_Cs):
index = random.randint(0, len(self._candidate_Cs) - 1)
cs.append(str(self._candidate_Cs[index]))
return ":".join(cs)
return out, logits, log_probs
@property
def genotype(self):
cs = []
for i in range(self._max_num_Cs):
with torch.no_grad():
index = self._arch_parameters[i].argmax().item()
cs.append(str(self._candidate_Cs[index]))
return ":".join(cs)
def get_message(self) -> Text:
string = self.extra_repr()
for i, cell in enumerate(self._cells):
string += "\n {:02d}/{:02d} :: {:}".format(
i, len(self._cells), cell.extra_repr()
)
return string
def extra_repr(self):
return "{name}(candidates={_candidate_Cs}, num={_max_num_Cs}, N={_num_stage}, L={_num_layer})".format(
name=self.__class__.__name__, **self.__dict__
)
def forward(self, inputs):
feature = inputs
log_probs = []
for i, cell in enumerate(self._cells):
feature = cell(feature)
# apply different searching algorithms
idx = max(0, i - 1)
if self._warmup_ratio is not None:
if random.random() < self._warmup_ratio:
mask = self._masks[-1]
else:
mask = self._masks[random.randint(0, len(self._masks) - 1)]
feature = feature * mask.view(1, -1, 1, 1)
elif self._algo == "mask_gumbel":
weights = nn.functional.gumbel_softmax(
self._arch_parameters[idx : idx + 1], tau=self.tau, dim=-1
)
mask = torch.matmul(weights, self._masks).view(1, -1, 1, 1)
feature = feature * mask
elif self._algo == "tas":
selected_cs, selected_probs = select2withP(
self._arch_parameters[idx : idx + 1], self.tau, num=2
)
with torch.no_grad():
i1, i2 = selected_cs.cpu().view(-1).tolist()
c1, c2 = self._candidate_Cs[i1], self._candidate_Cs[i2]
out_channel = max(c1, c2)
out1 = ChannelWiseInter(feature[:, :c1], out_channel)
out2 = ChannelWiseInter(feature[:, :c2], out_channel)
out = out1 * selected_probs[0, 0] + out2 * selected_probs[0, 1]
if feature.shape[1] == out.shape[1]:
feature = out
else:
miss = torch.zeros(
feature.shape[0],
feature.shape[1] - out.shape[1],
feature.shape[2],
feature.shape[3],
device=feature.device,
)
feature = torch.cat((out, miss), dim=1)
elif self._algo == "mask_rl":
prob = nn.functional.softmax(
self._arch_parameters[idx : idx + 1], dim=-1
)
dist = torch.distributions.Categorical(prob)
action = dist.sample()
log_probs.append(dist.log_prob(action))
mask = self._masks[action.item()].view(1, -1, 1, 1)
feature = feature * mask
else:
raise ValueError("invalid algorithm : {:}".format(self._algo))
out = self.lastact(feature)
out = self.global_pooling(out)
out = out.view(out.size(0), -1)
logits = self.classifier(out)
return out, logits, log_probs

View File

@@ -6,15 +6,15 @@ import torch.nn as nn
from SoftSelect import ChannelWiseInter
if __name__ == '__main__':
if __name__ == "__main__":
tensors = torch.rand((16, 128, 7, 7))
for oc in range(200, 210):
out_v1 = ChannelWiseInter(tensors, oc, 'v1')
out_v2 = ChannelWiseInter(tensors, oc, 'v2')
assert (out_v1 == out_v2).any().item() == 1
for oc in range(48, 160):
out_v1 = ChannelWiseInter(tensors, oc, 'v1')
out_v2 = ChannelWiseInter(tensors, oc, 'v2')
assert (out_v1 == out_v2).any().item() == 1
tensors = torch.rand((16, 128, 7, 7))
for oc in range(200, 210):
out_v1 = ChannelWiseInter(tensors, oc, "v1")
out_v2 = ChannelWiseInter(tensors, oc, "v2")
assert (out_v1 == out_v2).any().item() == 1
for oc in range(48, 160):
out_v1 = ChannelWiseInter(tensors, oc, "v1")
out_v2 = ChannelWiseInter(tensors, oc, "v2")
assert (out_v1 == out_v2).any().item() == 1

View File

@@ -35,6 +35,22 @@ def get_model(config: Dict[Text, Any], **kwargs):
act_cls(),
SuperLinear(hidden_dim2, kwargs["output_dim"]),
)
elif model_type == "norm_mlp":
act_cls = super_name2activation[kwargs["act_cls"]]
norm_cls = super_name2norm[kwargs["norm_cls"]]
sub_layers, last_dim = [], kwargs["input_dim"]
for i, hidden_dim in enumerate(kwargs["hidden_dims"]):
sub_layers.extend(
[
norm_cls(last_dim, elementwise_affine=False),
SuperLinear(last_dim, hidden_dim),
act_cls(),
]
)
last_dim = hidden_dim
sub_layers.append(SuperLinear(last_dim, kwargs["output_dim"]))
model = SuperSequential(*sub_layers)
else:
raise TypeError("Unkonwn model type: {:}".format(model_type))
return model
return model