Use black for lib/models

This commit is contained in:
D-X-Y
2021-05-12 16:28:05 +08:00
parent d51e5fdc7f
commit f1c47af5fa
42 changed files with 7552 additions and 4688 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -6,335 +6,510 @@ from collections import OrderedDict
from bisect import bisect_right
import torch.nn as nn
from ..initialization import initialize_resnet
from ..SharedUtils import additive_func
from .SoftSelect import select2withP, ChannelWiseInter
from .SoftSelect import linear_forward
from .SoftSelect import get_width_choices
from ..SharedUtils import additive_func
from .SoftSelect import select2withP, ChannelWiseInter
from .SoftSelect import linear_forward
from .SoftSelect import get_width_choices
def get_depth_choices(nDepth, return_num):
if nDepth == 2:
choices = (1, 2)
elif nDepth == 3:
choices = (1, 2, 3)
elif nDepth > 3:
choices = list(range(1, nDepth+1, 2))
if choices[-1] < nDepth: choices.append(nDepth)
else:
raise ValueError('invalid nDepth : {:}'.format(nDepth))
if return_num: return len(choices)
else : return choices
if nDepth == 2:
choices = (1, 2)
elif nDepth == 3:
choices = (1, 2, 3)
elif nDepth > 3:
choices = list(range(1, nDepth + 1, 2))
if choices[-1] < nDepth:
choices.append(nDepth)
else:
raise ValueError("invalid nDepth : {:}".format(nDepth))
if return_num:
return len(choices)
else:
return choices
class ConvBNReLU(nn.Module):
num_conv = 1
def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu):
super(ConvBNReLU, self).__init__()
self.InShape = None
self.OutShape = None
self.choices = get_width_choices(nOut)
self.register_buffer('choices_tensor', torch.Tensor( self.choices ))
num_conv = 1
if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
else : self.avg = None
self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias)
if has_bn : self.bn = nn.BatchNorm2d(nOut)
else : self.bn = None
if has_relu: self.relu = nn.ReLU(inplace=False)
else : self.relu = None
self.in_dim = nIn
self.out_dim = nOut
def __init__(
self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu
):
super(ConvBNReLU, self).__init__()
self.InShape = None
self.OutShape = None
self.choices = get_width_choices(nOut)
self.register_buffer("choices_tensor", torch.Tensor(self.choices))
def get_flops(self, divide=1):
iC, oC = self.in_dim, self.out_dim
assert iC <= self.conv.in_channels and oC <= self.conv.out_channels, '{:} vs {:} | {:} vs {:}'.format(iC, self.conv.in_channels, oC, self.conv.out_channels)
assert isinstance(self.InShape, tuple) and len(self.InShape) == 2, 'invalid in-shape : {:}'.format(self.InShape)
assert isinstance(self.OutShape, tuple) and len(self.OutShape) == 2, 'invalid out-shape : {:}'.format(self.OutShape)
#conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
conv_per_position_flops = (self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups)
all_positions = self.OutShape[0] * self.OutShape[1]
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
if self.conv.bias is not None: flops += all_positions / divide
return flops
if has_avg:
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
else:
self.avg = None
self.conv = nn.Conv2d(
nIn,
nOut,
kernel_size=kernel,
stride=stride,
padding=padding,
dilation=1,
groups=1,
bias=bias,
)
if has_bn:
self.bn = nn.BatchNorm2d(nOut)
else:
self.bn = None
if has_relu:
self.relu = nn.ReLU(inplace=False)
else:
self.relu = None
self.in_dim = nIn
self.out_dim = nOut
def forward(self, inputs):
if self.avg : out = self.avg( inputs )
else : out = inputs
conv = self.conv( out )
if self.bn : out = self.bn( conv )
else : out = conv
if self.relu: out = self.relu( out )
else : out = out
if self.InShape is None:
self.InShape = (inputs.size(-2), inputs.size(-1))
self.OutShape = (out.size(-2) , out.size(-1))
return out
def get_flops(self, divide=1):
iC, oC = self.in_dim, self.out_dim
assert (
iC <= self.conv.in_channels and oC <= self.conv.out_channels
), "{:} vs {:} | {:} vs {:}".format(
iC, self.conv.in_channels, oC, self.conv.out_channels
)
assert (
isinstance(self.InShape, tuple) and len(self.InShape) == 2
), "invalid in-shape : {:}".format(self.InShape)
assert (
isinstance(self.OutShape, tuple) and len(self.OutShape) == 2
), "invalid out-shape : {:}".format(self.OutShape)
# conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
conv_per_position_flops = (
self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups
)
all_positions = self.OutShape[0] * self.OutShape[1]
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
if self.conv.bias is not None:
flops += all_positions / divide
return flops
def forward(self, inputs):
if self.avg:
out = self.avg(inputs)
else:
out = inputs
conv = self.conv(out)
if self.bn:
out = self.bn(conv)
else:
out = conv
if self.relu:
out = self.relu(out)
else:
out = out
if self.InShape is None:
self.InShape = (inputs.size(-2), inputs.size(-1))
self.OutShape = (out.size(-2), out.size(-1))
return out
class ResNetBasicblock(nn.Module):
expansion = 1
num_conv = 2
def __init__(self, inplanes, planes, stride):
super(ResNetBasicblock, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_b = ConvBNReLU( planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False)
if stride == 2:
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
elif inplanes != planes:
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
else:
self.downsample = None
self.out_dim = planes
self.search_mode = 'basic'
expansion = 1
num_conv = 2
def get_flops(self, divide=1):
flop_A = self.conv_a.get_flops(divide)
flop_B = self.conv_b.get_flops(divide)
if hasattr(self.downsample, 'get_flops'):
flop_C = self.downsample.get_flops(divide)
else:
flop_C = 0
return flop_A + flop_B + flop_C
def __init__(self, inplanes, planes, stride):
super(ResNetBasicblock, self).__init__()
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
self.conv_a = ConvBNReLU(
inplanes,
planes,
3,
stride,
1,
False,
has_avg=False,
has_bn=True,
has_relu=True,
)
self.conv_b = ConvBNReLU(
planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False
)
if stride == 2:
self.downsample = ConvBNReLU(
inplanes,
planes,
1,
1,
0,
False,
has_avg=True,
has_bn=False,
has_relu=False,
)
elif inplanes != planes:
self.downsample = ConvBNReLU(
inplanes,
planes,
1,
1,
0,
False,
has_avg=False,
has_bn=True,
has_relu=False,
)
else:
self.downsample = None
self.out_dim = planes
self.search_mode = "basic"
def forward(self, inputs):
basicblock = self.conv_a(inputs)
basicblock = self.conv_b(basicblock)
if self.downsample is not None: residual = self.downsample(inputs)
else : residual = inputs
out = additive_func(residual, basicblock)
return nn.functional.relu(out, inplace=True)
def get_flops(self, divide=1):
flop_A = self.conv_a.get_flops(divide)
flop_B = self.conv_b.get_flops(divide)
if hasattr(self.downsample, "get_flops"):
flop_C = self.downsample.get_flops(divide)
else:
flop_C = 0
return flop_A + flop_B + flop_C
def forward(self, inputs):
basicblock = self.conv_a(inputs)
basicblock = self.conv_b(basicblock)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = additive_func(residual, basicblock)
return nn.functional.relu(out, inplace=True)
class ResNetBottleneck(nn.Module):
expansion = 4
num_conv = 3
def __init__(self, inplanes, planes, stride):
super(ResNetBottleneck, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
self.conv_1x1 = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_3x3 = ConvBNReLU( planes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False)
if stride == 2:
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
elif inplanes != planes*self.expansion:
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
else:
self.downsample = None
self.out_dim = planes * self.expansion
self.search_mode = 'basic'
expansion = 4
num_conv = 3
def get_range(self):
return self.conv_1x1.get_range() + self.conv_3x3.get_range() + self.conv_1x4.get_range()
def __init__(self, inplanes, planes, stride):
super(ResNetBottleneck, self).__init__()
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
self.conv_1x1 = ConvBNReLU(
inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True
)
self.conv_3x3 = ConvBNReLU(
planes,
planes,
3,
stride,
1,
False,
has_avg=False,
has_bn=True,
has_relu=True,
)
self.conv_1x4 = ConvBNReLU(
planes,
planes * self.expansion,
1,
1,
0,
False,
has_avg=False,
has_bn=True,
has_relu=False,
)
if stride == 2:
self.downsample = ConvBNReLU(
inplanes,
planes * self.expansion,
1,
1,
0,
False,
has_avg=True,
has_bn=False,
has_relu=False,
)
elif inplanes != planes * self.expansion:
self.downsample = ConvBNReLU(
inplanes,
planes * self.expansion,
1,
1,
0,
False,
has_avg=False,
has_bn=True,
has_relu=False,
)
else:
self.downsample = None
self.out_dim = planes * self.expansion
self.search_mode = "basic"
def get_flops(self, divide):
flop_A = self.conv_1x1.get_flops(divide)
flop_B = self.conv_3x3.get_flops(divide)
flop_C = self.conv_1x4.get_flops(divide)
if hasattr(self.downsample, 'get_flops'):
flop_D = self.downsample.get_flops(divide)
else:
flop_D = 0
return flop_A + flop_B + flop_C + flop_D
def get_range(self):
return (
self.conv_1x1.get_range()
+ self.conv_3x3.get_range()
+ self.conv_1x4.get_range()
)
def forward(self, inputs):
bottleneck = self.conv_1x1(inputs)
bottleneck = self.conv_3x3(bottleneck)
bottleneck = self.conv_1x4(bottleneck)
if self.downsample is not None: residual = self.downsample(inputs)
else : residual = inputs
out = additive_func(residual, bottleneck)
return nn.functional.relu(out, inplace=True)
def get_flops(self, divide):
flop_A = self.conv_1x1.get_flops(divide)
flop_B = self.conv_3x3.get_flops(divide)
flop_C = self.conv_1x4.get_flops(divide)
if hasattr(self.downsample, "get_flops"):
flop_D = self.downsample.get_flops(divide)
else:
flop_D = 0
return flop_A + flop_B + flop_C + flop_D
def forward(self, inputs):
bottleneck = self.conv_1x1(inputs)
bottleneck = self.conv_3x3(bottleneck)
bottleneck = self.conv_1x4(bottleneck)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = additive_func(residual, bottleneck)
return nn.functional.relu(out, inplace=True)
class SearchDepthCifarResNet(nn.Module):
def __init__(self, block_name, depth, num_classes):
super(SearchDepthCifarResNet, self).__init__()
def __init__(self, block_name, depth, num_classes):
super(SearchDepthCifarResNet, self).__init__()
#Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
if block_name == 'ResNetBasicblock':
block = ResNetBasicblock
assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110'
layer_blocks = (depth - 2) // 6
elif block_name == 'ResNetBottleneck':
block = ResNetBottleneck
assert (depth - 2) % 9 == 0, 'depth should be one of 164'
layer_blocks = (depth - 2) // 9
else:
raise ValueError('invalid block : {:}'.format(block_name))
self.message = 'SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks)
self.num_classes = num_classes
self.channels = [16]
self.layers = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] )
self.InShape = None
self.depth_info = OrderedDict()
self.depth_at_i = OrderedDict()
for stage in range(3):
cur_block_choices = get_depth_choices(layer_blocks, False)
assert cur_block_choices[-1] == layer_blocks, 'stage={:}, {:} vs {:}'.format(stage, cur_block_choices, layer_blocks)
self.message += "\nstage={:} ::: depth-block-choices={:} for {:} blocks.".format(stage, cur_block_choices, layer_blocks)
block_choices, xstart = [], len(self.layers)
for iL in range(layer_blocks):
iC = self.channels[-1]
planes = 16 * (2**stage)
stride = 2 if stage > 0 and iL == 0 else 1
module = block(iC, planes, stride)
self.channels.append( module.out_dim )
self.layers.append ( module )
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride)
# added for depth
layer_index = len(self.layers) - 1
if iL + 1 in cur_block_choices: block_choices.append( layer_index )
if iL + 1 == layer_blocks:
self.depth_info[layer_index] = {'choices': block_choices,
'stage' : stage,
'xstart' : xstart}
self.depth_info_list = []
for xend, info in self.depth_info.items():
self.depth_info_list.append( (xend, info) )
xstart, xstage = info['xstart'], info['stage']
for ilayer in range(xstart, xend+1):
idx = bisect_right(info['choices'], ilayer-1)
self.depth_at_i[ilayer] = (xstage, idx)
self.avgpool = nn.AvgPool2d(8)
self.classifier = nn.Linear(module.out_dim, num_classes)
self.InShape = None
self.tau = -1
self.search_mode = 'basic'
#assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
self.register_parameter('depth_attentions', nn.Parameter(torch.Tensor(3, get_depth_choices(layer_blocks, True))))
nn.init.normal_(self.depth_attentions, 0, 0.01)
self.apply(initialize_resnet)
def arch_parameters(self):
return [self.depth_attentions]
def base_parameters(self):
return list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters())
def get_flop(self, mode, config_dict, extra_info):
if config_dict is not None: config_dict = config_dict.copy()
# select depth
if mode == 'genotype':
with torch.no_grad():
depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
choices = torch.argmax(depth_probs, dim=1).cpu().tolist()
elif mode == 'max':
choices = [depth_probs.size(1)-1 for _ in range(depth_probs.size(0))]
elif mode == 'random':
with torch.no_grad():
depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
choices = torch.multinomial(depth_probs, 1, False).cpu().tolist()
else:
raise ValueError('invalid mode : {:}'.format(mode))
selected_layers = []
for choice, xvalue in zip(choices, self.depth_info_list):
xtemp = xvalue[1]['choices'][choice] - xvalue[1]['xstart'] + 1
selected_layers.append(xtemp)
flop = 0
for i, layer in enumerate(self.layers):
if i in self.depth_at_i:
xstagei, xatti = self.depth_at_i[i]
if xatti <= choices[xstagei]: # leave this depth
flop+= layer.get_flops()
# Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
if block_name == "ResNetBasicblock":
block = ResNetBasicblock
assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110"
layer_blocks = (depth - 2) // 6
elif block_name == "ResNetBottleneck":
block = ResNetBottleneck
assert (depth - 2) % 9 == 0, "depth should be one of 164"
layer_blocks = (depth - 2) // 9
else:
flop+= 0 # do not use this layer
else:
flop+= layer.get_flops()
# the last fc layer
flop += self.classifier.in_features * self.classifier.out_features
if config_dict is None:
return flop / 1e6
else:
config_dict['xblocks'] = selected_layers
config_dict['super_type'] = 'infer-depth'
config_dict['estimated_FLOP'] = flop / 1e6
return flop / 1e6, config_dict
raise ValueError("invalid block : {:}".format(block_name))
def get_arch_info(self):
string = "for depth, there are {:} attention probabilities.".format(len(self.depth_attentions))
string+= '\n{:}'.format(self.depth_info)
discrepancy = []
with torch.no_grad():
for i, att in enumerate(self.depth_attentions):
prob = nn.functional.softmax(att, dim=0)
prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist()
prob = ['{:.3f}'.format(x) for x in prob]
xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.depth_attentions), ' '.join(prob))
logt = ['{:.4f}'.format(x) for x in att.cpu().tolist()]
xstring += ' || {:17s}'.format(' '.join(logt))
prob = sorted( [float(x) for x in prob] )
disc = prob[-1] - prob[-2]
xstring += ' || discrepancy={:.2f} || select={:}/{:}'.format(disc, selc, len(prob))
discrepancy.append( disc )
string += '\n{:}'.format(xstring)
return string, discrepancy
self.message = (
"SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}".format(
depth, layer_blocks
)
)
self.num_classes = num_classes
self.channels = [16]
self.layers = nn.ModuleList(
[
ConvBNReLU(
3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True
)
]
)
self.InShape = None
self.depth_info = OrderedDict()
self.depth_at_i = OrderedDict()
for stage in range(3):
cur_block_choices = get_depth_choices(layer_blocks, False)
assert (
cur_block_choices[-1] == layer_blocks
), "stage={:}, {:} vs {:}".format(stage, cur_block_choices, layer_blocks)
self.message += (
"\nstage={:} ::: depth-block-choices={:} for {:} blocks.".format(
stage, cur_block_choices, layer_blocks
)
)
block_choices, xstart = [], len(self.layers)
for iL in range(layer_blocks):
iC = self.channels[-1]
planes = 16 * (2 ** stage)
stride = 2 if stage > 0 and iL == 0 else 1
module = block(iC, planes, stride)
self.channels.append(module.out_dim)
self.layers.append(module)
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(
stage,
iL,
layer_blocks,
len(self.layers) - 1,
iC,
module.out_dim,
stride,
)
# added for depth
layer_index = len(self.layers) - 1
if iL + 1 in cur_block_choices:
block_choices.append(layer_index)
if iL + 1 == layer_blocks:
self.depth_info[layer_index] = {
"choices": block_choices,
"stage": stage,
"xstart": xstart,
}
self.depth_info_list = []
for xend, info in self.depth_info.items():
self.depth_info_list.append((xend, info))
xstart, xstage = info["xstart"], info["stage"]
for ilayer in range(xstart, xend + 1):
idx = bisect_right(info["choices"], ilayer - 1)
self.depth_at_i[ilayer] = (xstage, idx)
def set_tau(self, tau_max, tau_min, epoch_ratio):
assert epoch_ratio >= 0 and epoch_ratio <= 1, 'invalid epoch-ratio : {:}'.format(epoch_ratio)
tau = tau_min + (tau_max-tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
self.tau = tau
self.avgpool = nn.AvgPool2d(8)
self.classifier = nn.Linear(module.out_dim, num_classes)
self.InShape = None
self.tau = -1
self.search_mode = "basic"
# assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
def get_message(self):
return self.message
self.register_parameter(
"depth_attentions",
nn.Parameter(torch.Tensor(3, get_depth_choices(layer_blocks, True))),
)
nn.init.normal_(self.depth_attentions, 0, 0.01)
self.apply(initialize_resnet)
def forward(self, inputs):
if self.search_mode == 'basic':
return self.basic_forward(inputs)
elif self.search_mode == 'search':
return self.search_forward(inputs)
else:
raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
def arch_parameters(self):
return [self.depth_attentions]
def search_forward(self, inputs):
flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
flop_depth_probs = torch.flip( torch.cumsum( torch.flip(flop_depth_probs, [1]), 1 ), [1] )
selected_depth_probs = select2withP(self.depth_attentions, self.tau, True)
def base_parameters(self):
return (
list(self.layers.parameters())
+ list(self.avgpool.parameters())
+ list(self.classifier.parameters())
)
x, flops = inputs, []
feature_maps = []
for i, layer in enumerate(self.layers):
layer_i = layer( x )
feature_maps.append( layer_i )
if i in self.depth_info: # aggregate the information
choices = self.depth_info[i]['choices']
xstagei = self.depth_info[i]['stage']
possible_tensors = []
for tempi, A in enumerate(choices):
xtensor = feature_maps[A]
possible_tensors.append( xtensor )
weighted_sum = sum( xtensor * W for xtensor, W in zip(possible_tensors, selected_depth_probs[xstagei]) )
x = weighted_sum
else:
x = layer_i
if i in self.depth_at_i:
xstagei, xatti = self.depth_at_i[i]
#print ('layer-{:03d}, stage={:}, att={:}, prob={:}, flop={:}'.format(i, xstagei, xatti, flop_depth_probs[xstagei, xatti].item(), layer.get_flops(1e6)))
x_expected_flop = flop_depth_probs[xstagei, xatti] * layer.get_flops(1e6)
else:
x_expected_flop = layer.get_flops(1e6)
flops.append( x_expected_flop )
flops.append( (self.classifier.in_features * self.classifier.out_features*1.0/1e6) )
def get_flop(self, mode, config_dict, extra_info):
if config_dict is not None:
config_dict = config_dict.copy()
# select depth
if mode == "genotype":
with torch.no_grad():
depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
choices = torch.argmax(depth_probs, dim=1).cpu().tolist()
elif mode == "max":
choices = [depth_probs.size(1) - 1 for _ in range(depth_probs.size(0))]
elif mode == "random":
with torch.no_grad():
depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
choices = torch.multinomial(depth_probs, 1, False).cpu().tolist()
else:
raise ValueError("invalid mode : {:}".format(mode))
selected_layers = []
for choice, xvalue in zip(choices, self.depth_info_list):
xtemp = xvalue[1]["choices"][choice] - xvalue[1]["xstart"] + 1
selected_layers.append(xtemp)
flop = 0
for i, layer in enumerate(self.layers):
if i in self.depth_at_i:
xstagei, xatti = self.depth_at_i[i]
if xatti <= choices[xstagei]: # leave this depth
flop += layer.get_flops()
else:
flop += 0 # do not use this layer
else:
flop += layer.get_flops()
# the last fc layer
flop += self.classifier.in_features * self.classifier.out_features
if config_dict is None:
return flop / 1e6
else:
config_dict["xblocks"] = selected_layers
config_dict["super_type"] = "infer-depth"
config_dict["estimated_FLOP"] = flop / 1e6
return flop / 1e6, config_dict
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = linear_forward(features, self.classifier)
return logits, torch.stack( [sum(flops)] )
def get_arch_info(self):
string = "for depth, there are {:} attention probabilities.".format(
len(self.depth_attentions)
)
string += "\n{:}".format(self.depth_info)
discrepancy = []
with torch.no_grad():
for i, att in enumerate(self.depth_attentions):
prob = nn.functional.softmax(att, dim=0)
prob = prob.cpu()
selc = prob.argmax().item()
prob = prob.tolist()
prob = ["{:.3f}".format(x) for x in prob]
xstring = "{:03d}/{:03d}-th : {:}".format(
i, len(self.depth_attentions), " ".join(prob)
)
logt = ["{:.4f}".format(x) for x in att.cpu().tolist()]
xstring += " || {:17s}".format(" ".join(logt))
prob = sorted([float(x) for x in prob])
disc = prob[-1] - prob[-2]
xstring += " || discrepancy={:.2f} || select={:}/{:}".format(
disc, selc, len(prob)
)
discrepancy.append(disc)
string += "\n{:}".format(xstring)
return string, discrepancy
def basic_forward(self, inputs):
if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1))
x = inputs
for i, layer in enumerate(self.layers):
x = layer( x )
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = self.classifier(features)
return features, logits
def set_tau(self, tau_max, tau_min, epoch_ratio):
assert (
epoch_ratio >= 0 and epoch_ratio <= 1
), "invalid epoch-ratio : {:}".format(epoch_ratio)
tau = tau_min + (tau_max - tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
self.tau = tau
def get_message(self):
return self.message
def forward(self, inputs):
if self.search_mode == "basic":
return self.basic_forward(inputs)
elif self.search_mode == "search":
return self.search_forward(inputs)
else:
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
def search_forward(self, inputs):
flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
flop_depth_probs = torch.flip(
torch.cumsum(torch.flip(flop_depth_probs, [1]), 1), [1]
)
selected_depth_probs = select2withP(self.depth_attentions, self.tau, True)
x, flops = inputs, []
feature_maps = []
for i, layer in enumerate(self.layers):
layer_i = layer(x)
feature_maps.append(layer_i)
if i in self.depth_info: # aggregate the information
choices = self.depth_info[i]["choices"]
xstagei = self.depth_info[i]["stage"]
possible_tensors = []
for tempi, A in enumerate(choices):
xtensor = feature_maps[A]
possible_tensors.append(xtensor)
weighted_sum = sum(
xtensor * W
for xtensor, W in zip(
possible_tensors, selected_depth_probs[xstagei]
)
)
x = weighted_sum
else:
x = layer_i
if i in self.depth_at_i:
xstagei, xatti = self.depth_at_i[i]
# print ('layer-{:03d}, stage={:}, att={:}, prob={:}, flop={:}'.format(i, xstagei, xatti, flop_depth_probs[xstagei, xatti].item(), layer.get_flops(1e6)))
x_expected_flop = flop_depth_probs[xstagei, xatti] * layer.get_flops(
1e6
)
else:
x_expected_flop = layer.get_flops(1e6)
flops.append(x_expected_flop)
flops.append(
(self.classifier.in_features * self.classifier.out_features * 1.0 / 1e6)
)
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = linear_forward(features, self.classifier)
return logits, torch.stack([sum(flops)])
def basic_forward(self, inputs):
if self.InShape is None:
self.InShape = (inputs.size(-2), inputs.size(-1))
x = inputs
for i, layer in enumerate(self.layers):
x = layer(x)
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = self.classifier(features)
return features, logits

View File

@@ -4,390 +4,616 @@
import math, torch
import torch.nn as nn
from ..initialization import initialize_resnet
from ..SharedUtils import additive_func
from .SoftSelect import select2withP, ChannelWiseInter
from .SoftSelect import linear_forward
from .SoftSelect import get_width_choices as get_choices
from ..SharedUtils import additive_func
from .SoftSelect import select2withP, ChannelWiseInter
from .SoftSelect import linear_forward
from .SoftSelect import get_width_choices as get_choices
def conv_forward(inputs, conv, choices):
iC = conv.in_channels
fill_size = list(inputs.size())
fill_size[1] = iC - fill_size[1]
filled = torch.zeros(fill_size, device=inputs.device)
xinputs = torch.cat((inputs, filled), dim=1)
outputs = conv(xinputs)
selecteds = [outputs[:,:oC] for oC in choices]
return selecteds
iC = conv.in_channels
fill_size = list(inputs.size())
fill_size[1] = iC - fill_size[1]
filled = torch.zeros(fill_size, device=inputs.device)
xinputs = torch.cat((inputs, filled), dim=1)
outputs = conv(xinputs)
selecteds = [outputs[:, :oC] for oC in choices]
return selecteds
class ConvBNReLU(nn.Module):
num_conv = 1
def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu):
super(ConvBNReLU, self).__init__()
self.InShape = None
self.OutShape = None
self.choices = get_choices(nOut)
self.register_buffer('choices_tensor', torch.Tensor( self.choices ))
num_conv = 1
if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
else : self.avg = None
self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias)
#if has_bn : self.bn = nn.BatchNorm2d(nOut)
#else : self.bn = None
self.has_bn = has_bn
self.BNs = nn.ModuleList()
for i, _out in enumerate(self.choices):
self.BNs.append(nn.BatchNorm2d(_out))
if has_relu: self.relu = nn.ReLU(inplace=True)
else : self.relu = None
self.in_dim = nIn
self.out_dim = nOut
self.search_mode = 'basic'
def __init__(
self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu
):
super(ConvBNReLU, self).__init__()
self.InShape = None
self.OutShape = None
self.choices = get_choices(nOut)
self.register_buffer("choices_tensor", torch.Tensor(self.choices))
def get_flops(self, channels, check_range=True, divide=1):
iC, oC = channels
if check_range: assert iC <= self.conv.in_channels and oC <= self.conv.out_channels, '{:} vs {:} | {:} vs {:}'.format(iC, self.conv.in_channels, oC, self.conv.out_channels)
assert isinstance(self.InShape, tuple) and len(self.InShape) == 2, 'invalid in-shape : {:}'.format(self.InShape)
assert isinstance(self.OutShape, tuple) and len(self.OutShape) == 2, 'invalid out-shape : {:}'.format(self.OutShape)
#conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
conv_per_position_flops = (self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups)
all_positions = self.OutShape[0] * self.OutShape[1]
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
if self.conv.bias is not None: flops += all_positions / divide
return flops
if has_avg:
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
else:
self.avg = None
self.conv = nn.Conv2d(
nIn,
nOut,
kernel_size=kernel,
stride=stride,
padding=padding,
dilation=1,
groups=1,
bias=bias,
)
# if has_bn : self.bn = nn.BatchNorm2d(nOut)
# else : self.bn = None
self.has_bn = has_bn
self.BNs = nn.ModuleList()
for i, _out in enumerate(self.choices):
self.BNs.append(nn.BatchNorm2d(_out))
if has_relu:
self.relu = nn.ReLU(inplace=True)
else:
self.relu = None
self.in_dim = nIn
self.out_dim = nOut
self.search_mode = "basic"
def get_range(self):
return [self.choices]
def get_flops(self, channels, check_range=True, divide=1):
iC, oC = channels
if check_range:
assert (
iC <= self.conv.in_channels and oC <= self.conv.out_channels
), "{:} vs {:} | {:} vs {:}".format(
iC, self.conv.in_channels, oC, self.conv.out_channels
)
assert (
isinstance(self.InShape, tuple) and len(self.InShape) == 2
), "invalid in-shape : {:}".format(self.InShape)
assert (
isinstance(self.OutShape, tuple) and len(self.OutShape) == 2
), "invalid out-shape : {:}".format(self.OutShape)
# conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
conv_per_position_flops = (
self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups
)
all_positions = self.OutShape[0] * self.OutShape[1]
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
if self.conv.bias is not None:
flops += all_positions / divide
return flops
def forward(self, inputs):
if self.search_mode == 'basic':
return self.basic_forward(inputs)
elif self.search_mode == 'search':
return self.search_forward(inputs)
else:
raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
def get_range(self):
return [self.choices]
def search_forward(self, tuple_inputs):
assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) )
inputs, expected_inC, probability, index, prob = tuple_inputs
index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob)
probability = torch.squeeze(probability)
assert len(index) == 2, 'invalid length : {:}'.format(index)
# compute expected flop
#coordinates = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability)
expected_outC = (self.choices_tensor * probability).sum()
expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6)
if self.avg : out = self.avg( inputs )
else : out = inputs
# convolutional layer
out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index])
out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)]
# merge
out_channel = max([x.size(1) for x in out_bns])
outA = ChannelWiseInter(out_bns[0], out_channel)
outB = ChannelWiseInter(out_bns[1], out_channel)
out = outA * prob[0] + outB * prob[1]
#out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1])
def forward(self, inputs):
if self.search_mode == "basic":
return self.basic_forward(inputs)
elif self.search_mode == "search":
return self.search_forward(inputs)
else:
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
if self.relu: out = self.relu( out )
else : out = out
return out, expected_outC, expected_flop
def search_forward(self, tuple_inputs):
assert (
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
), "invalid type input : {:}".format(type(tuple_inputs))
inputs, expected_inC, probability, index, prob = tuple_inputs
index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob)
probability = torch.squeeze(probability)
assert len(index) == 2, "invalid length : {:}".format(index)
# compute expected flop
# coordinates = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability)
expected_outC = (self.choices_tensor * probability).sum()
expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6)
if self.avg:
out = self.avg(inputs)
else:
out = inputs
# convolutional layer
out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index])
out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)]
# merge
out_channel = max([x.size(1) for x in out_bns])
outA = ChannelWiseInter(out_bns[0], out_channel)
outB = ChannelWiseInter(out_bns[1], out_channel)
out = outA * prob[0] + outB * prob[1]
# out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1])
def basic_forward(self, inputs):
if self.avg : out = self.avg( inputs )
else : out = inputs
conv = self.conv( out )
if self.has_bn:out= self.BNs[-1]( conv )
else : out = conv
if self.relu: out = self.relu( out )
else : out = out
if self.InShape is None:
self.InShape = (inputs.size(-2), inputs.size(-1))
self.OutShape = (out.size(-2) , out.size(-1))
return out
if self.relu:
out = self.relu(out)
else:
out = out
return out, expected_outC, expected_flop
def basic_forward(self, inputs):
if self.avg:
out = self.avg(inputs)
else:
out = inputs
conv = self.conv(out)
if self.has_bn:
out = self.BNs[-1](conv)
else:
out = conv
if self.relu:
out = self.relu(out)
else:
out = out
if self.InShape is None:
self.InShape = (inputs.size(-2), inputs.size(-1))
self.OutShape = (out.size(-2), out.size(-1))
return out
class ResNetBasicblock(nn.Module):
expansion = 1
num_conv = 2
def __init__(self, inplanes, planes, stride):
super(ResNetBasicblock, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_b = ConvBNReLU( planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False)
if stride == 2:
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
elif inplanes != planes:
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
else:
self.downsample = None
self.out_dim = planes
self.search_mode = 'basic'
expansion = 1
num_conv = 2
def get_range(self):
return self.conv_a.get_range() + self.conv_b.get_range()
def __init__(self, inplanes, planes, stride):
super(ResNetBasicblock, self).__init__()
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
self.conv_a = ConvBNReLU(
inplanes,
planes,
3,
stride,
1,
False,
has_avg=False,
has_bn=True,
has_relu=True,
)
self.conv_b = ConvBNReLU(
planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False
)
if stride == 2:
self.downsample = ConvBNReLU(
inplanes,
planes,
1,
1,
0,
False,
has_avg=True,
has_bn=False,
has_relu=False,
)
elif inplanes != planes:
self.downsample = ConvBNReLU(
inplanes,
planes,
1,
1,
0,
False,
has_avg=False,
has_bn=True,
has_relu=False,
)
else:
self.downsample = None
self.out_dim = planes
self.search_mode = "basic"
def get_flops(self, channels):
assert len(channels) == 3, 'invalid channels : {:}'.format(channels)
flop_A = self.conv_a.get_flops([channels[0], channels[1]])
flop_B = self.conv_b.get_flops([channels[1], channels[2]])
if hasattr(self.downsample, 'get_flops'):
flop_C = self.downsample.get_flops([channels[0], channels[-1]])
else:
flop_C = 0
if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train
flop_C = channels[0] * channels[-1] * self.conv_b.OutShape[0] * self.conv_b.OutShape[1]
return flop_A + flop_B + flop_C
def get_range(self):
return self.conv_a.get_range() + self.conv_b.get_range()
def forward(self, inputs):
if self.search_mode == 'basic' : return self.basic_forward(inputs)
elif self.search_mode == 'search': return self.search_forward(inputs)
else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
def get_flops(self, channels):
assert len(channels) == 3, "invalid channels : {:}".format(channels)
flop_A = self.conv_a.get_flops([channels[0], channels[1]])
flop_B = self.conv_b.get_flops([channels[1], channels[2]])
if hasattr(self.downsample, "get_flops"):
flop_C = self.downsample.get_flops([channels[0], channels[-1]])
else:
flop_C = 0
if (
channels[0] != channels[-1] and self.downsample is None
): # this short-cut will be added during the infer-train
flop_C = (
channels[0]
* channels[-1]
* self.conv_b.OutShape[0]
* self.conv_b.OutShape[1]
)
return flop_A + flop_B + flop_C
def search_forward(self, tuple_inputs):
assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) )
inputs, expected_inC, probability, indexes, probs = tuple_inputs
assert indexes.size(0) == 2 and probs.size(0) == 2 and probability.size(0) == 2
out_a, expected_inC_a, expected_flop_a = self.conv_a( (inputs, expected_inC , probability[0], indexes[0], probs[0]) )
out_b, expected_inC_b, expected_flop_b = self.conv_b( (out_a , expected_inC_a, probability[1], indexes[1], probs[1]) )
if self.downsample is not None:
residual, _, expected_flop_c = self.downsample( (inputs, expected_inC , probability[1], indexes[1], probs[1]) )
else:
residual, expected_flop_c = inputs, 0
out = additive_func(residual, out_b)
return nn.functional.relu(out, inplace=True), expected_inC_b, sum([expected_flop_a, expected_flop_b, expected_flop_c])
def forward(self, inputs):
if self.search_mode == "basic":
return self.basic_forward(inputs)
elif self.search_mode == "search":
return self.search_forward(inputs)
else:
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
def basic_forward(self, inputs):
basicblock = self.conv_a(inputs)
basicblock = self.conv_b(basicblock)
if self.downsample is not None: residual = self.downsample(inputs)
else : residual = inputs
out = additive_func(residual, basicblock)
return nn.functional.relu(out, inplace=True)
def search_forward(self, tuple_inputs):
assert (
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
), "invalid type input : {:}".format(type(tuple_inputs))
inputs, expected_inC, probability, indexes, probs = tuple_inputs
assert indexes.size(0) == 2 and probs.size(0) == 2 and probability.size(0) == 2
out_a, expected_inC_a, expected_flop_a = self.conv_a(
(inputs, expected_inC, probability[0], indexes[0], probs[0])
)
out_b, expected_inC_b, expected_flop_b = self.conv_b(
(out_a, expected_inC_a, probability[1], indexes[1], probs[1])
)
if self.downsample is not None:
residual, _, expected_flop_c = self.downsample(
(inputs, expected_inC, probability[1], indexes[1], probs[1])
)
else:
residual, expected_flop_c = inputs, 0
out = additive_func(residual, out_b)
return (
nn.functional.relu(out, inplace=True),
expected_inC_b,
sum([expected_flop_a, expected_flop_b, expected_flop_c]),
)
def basic_forward(self, inputs):
basicblock = self.conv_a(inputs)
basicblock = self.conv_b(basicblock)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = additive_func(residual, basicblock)
return nn.functional.relu(out, inplace=True)
class ResNetBottleneck(nn.Module):
expansion = 4
num_conv = 3
def __init__(self, inplanes, planes, stride):
super(ResNetBottleneck, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
self.conv_1x1 = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_3x3 = ConvBNReLU( planes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False)
if stride == 2:
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
elif inplanes != planes*self.expansion:
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
else:
self.downsample = None
self.out_dim = planes * self.expansion
self.search_mode = 'basic'
expansion = 4
num_conv = 3
def get_range(self):
return self.conv_1x1.get_range() + self.conv_3x3.get_range() + self.conv_1x4.get_range()
def __init__(self, inplanes, planes, stride):
super(ResNetBottleneck, self).__init__()
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
self.conv_1x1 = ConvBNReLU(
inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True
)
self.conv_3x3 = ConvBNReLU(
planes,
planes,
3,
stride,
1,
False,
has_avg=False,
has_bn=True,
has_relu=True,
)
self.conv_1x4 = ConvBNReLU(
planes,
planes * self.expansion,
1,
1,
0,
False,
has_avg=False,
has_bn=True,
has_relu=False,
)
if stride == 2:
self.downsample = ConvBNReLU(
inplanes,
planes * self.expansion,
1,
1,
0,
False,
has_avg=True,
has_bn=False,
has_relu=False,
)
elif inplanes != planes * self.expansion:
self.downsample = ConvBNReLU(
inplanes,
planes * self.expansion,
1,
1,
0,
False,
has_avg=False,
has_bn=True,
has_relu=False,
)
else:
self.downsample = None
self.out_dim = planes * self.expansion
self.search_mode = "basic"
def get_flops(self, channels):
assert len(channels) == 4, 'invalid channels : {:}'.format(channels)
flop_A = self.conv_1x1.get_flops([channels[0], channels[1]])
flop_B = self.conv_3x3.get_flops([channels[1], channels[2]])
flop_C = self.conv_1x4.get_flops([channels[2], channels[3]])
if hasattr(self.downsample, 'get_flops'):
flop_D = self.downsample.get_flops([channels[0], channels[-1]])
else:
flop_D = 0
if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train
flop_D = channels[0] * channels[-1] * self.conv_1x4.OutShape[0] * self.conv_1x4.OutShape[1]
return flop_A + flop_B + flop_C + flop_D
def get_range(self):
return (
self.conv_1x1.get_range()
+ self.conv_3x3.get_range()
+ self.conv_1x4.get_range()
)
def forward(self, inputs):
if self.search_mode == 'basic' : return self.basic_forward(inputs)
elif self.search_mode == 'search': return self.search_forward(inputs)
else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
def get_flops(self, channels):
assert len(channels) == 4, "invalid channels : {:}".format(channels)
flop_A = self.conv_1x1.get_flops([channels[0], channels[1]])
flop_B = self.conv_3x3.get_flops([channels[1], channels[2]])
flop_C = self.conv_1x4.get_flops([channels[2], channels[3]])
if hasattr(self.downsample, "get_flops"):
flop_D = self.downsample.get_flops([channels[0], channels[-1]])
else:
flop_D = 0
if (
channels[0] != channels[-1] and self.downsample is None
): # this short-cut will be added during the infer-train
flop_D = (
channels[0]
* channels[-1]
* self.conv_1x4.OutShape[0]
* self.conv_1x4.OutShape[1]
)
return flop_A + flop_B + flop_C + flop_D
def basic_forward(self, inputs):
bottleneck = self.conv_1x1(inputs)
bottleneck = self.conv_3x3(bottleneck)
bottleneck = self.conv_1x4(bottleneck)
if self.downsample is not None: residual = self.downsample(inputs)
else : residual = inputs
out = additive_func(residual, bottleneck)
return nn.functional.relu(out, inplace=True)
def forward(self, inputs):
if self.search_mode == "basic":
return self.basic_forward(inputs)
elif self.search_mode == "search":
return self.search_forward(inputs)
else:
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
def search_forward(self, tuple_inputs):
assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) )
inputs, expected_inC, probability, indexes, probs = tuple_inputs
assert indexes.size(0) == 3 and probs.size(0) == 3 and probability.size(0) == 3
out_1x1, expected_inC_1x1, expected_flop_1x1 = self.conv_1x1( (inputs, expected_inC , probability[0], indexes[0], probs[0]) )
out_3x3, expected_inC_3x3, expected_flop_3x3 = self.conv_3x3( (out_1x1,expected_inC_1x1, probability[1], indexes[1], probs[1]) )
out_1x4, expected_inC_1x4, expected_flop_1x4 = self.conv_1x4( (out_3x3,expected_inC_3x3, probability[2], indexes[2], probs[2]) )
if self.downsample is not None:
residual, _, expected_flop_c = self.downsample( (inputs, expected_inC , probability[2], indexes[2], probs[2]) )
else:
residual, expected_flop_c = inputs, 0
out = additive_func(residual, out_1x4)
return nn.functional.relu(out, inplace=True), expected_inC_1x4, sum([expected_flop_1x1, expected_flop_3x3, expected_flop_1x4, expected_flop_c])
def basic_forward(self, inputs):
bottleneck = self.conv_1x1(inputs)
bottleneck = self.conv_3x3(bottleneck)
bottleneck = self.conv_1x4(bottleneck)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = additive_func(residual, bottleneck)
return nn.functional.relu(out, inplace=True)
def search_forward(self, tuple_inputs):
assert (
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
), "invalid type input : {:}".format(type(tuple_inputs))
inputs, expected_inC, probability, indexes, probs = tuple_inputs
assert indexes.size(0) == 3 and probs.size(0) == 3 and probability.size(0) == 3
out_1x1, expected_inC_1x1, expected_flop_1x1 = self.conv_1x1(
(inputs, expected_inC, probability[0], indexes[0], probs[0])
)
out_3x3, expected_inC_3x3, expected_flop_3x3 = self.conv_3x3(
(out_1x1, expected_inC_1x1, probability[1], indexes[1], probs[1])
)
out_1x4, expected_inC_1x4, expected_flop_1x4 = self.conv_1x4(
(out_3x3, expected_inC_3x3, probability[2], indexes[2], probs[2])
)
if self.downsample is not None:
residual, _, expected_flop_c = self.downsample(
(inputs, expected_inC, probability[2], indexes[2], probs[2])
)
else:
residual, expected_flop_c = inputs, 0
out = additive_func(residual, out_1x4)
return (
nn.functional.relu(out, inplace=True),
expected_inC_1x4,
sum(
[
expected_flop_1x1,
expected_flop_3x3,
expected_flop_1x4,
expected_flop_c,
]
),
)
class SearchWidthCifarResNet(nn.Module):
def __init__(self, block_name, depth, num_classes):
super(SearchWidthCifarResNet, self).__init__()
def __init__(self, block_name, depth, num_classes):
super(SearchWidthCifarResNet, self).__init__()
# Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
if block_name == "ResNetBasicblock":
block = ResNetBasicblock
assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110"
layer_blocks = (depth - 2) // 6
elif block_name == "ResNetBottleneck":
block = ResNetBottleneck
assert (depth - 2) % 9 == 0, "depth should be one of 164"
layer_blocks = (depth - 2) // 9
else:
raise ValueError("invalid block : {:}".format(block_name))
#Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
if block_name == 'ResNetBasicblock':
block = ResNetBasicblock
assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110'
layer_blocks = (depth - 2) // 6
elif block_name == 'ResNetBottleneck':
block = ResNetBottleneck
assert (depth - 2) % 9 == 0, 'depth should be one of 164'
layer_blocks = (depth - 2) // 9
else:
raise ValueError('invalid block : {:}'.format(block_name))
self.message = (
"SearchWidthCifarResNet : Depth : {:} , Layers for each block : {:}".format(
depth, layer_blocks
)
)
self.num_classes = num_classes
self.channels = [16]
self.layers = nn.ModuleList(
[
ConvBNReLU(
3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True
)
]
)
self.InShape = None
for stage in range(3):
for iL in range(layer_blocks):
iC = self.channels[-1]
planes = 16 * (2 ** stage)
stride = 2 if stage > 0 and iL == 0 else 1
module = block(iC, planes, stride)
self.channels.append(module.out_dim)
self.layers.append(module)
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(
stage,
iL,
layer_blocks,
len(self.layers) - 1,
iC,
module.out_dim,
stride,
)
self.message = 'SearchWidthCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks)
self.num_classes = num_classes
self.channels = [16]
self.layers = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] )
self.InShape = None
for stage in range(3):
for iL in range(layer_blocks):
iC = self.channels[-1]
planes = 16 * (2**stage)
stride = 2 if stage > 0 and iL == 0 else 1
module = block(iC, planes, stride)
self.channels.append( module.out_dim )
self.layers.append ( module )
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride)
self.avgpool = nn.AvgPool2d(8)
self.classifier = nn.Linear(module.out_dim, num_classes)
self.InShape = None
self.tau = -1
self.search_mode = 'basic'
#assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
# parameters for width
self.Ranges = []
self.layer2indexRange = []
for i, layer in enumerate(self.layers):
start_index = len(self.Ranges)
self.Ranges += layer.get_range()
self.layer2indexRange.append( (start_index, len(self.Ranges)) )
assert len(self.Ranges) + 1 == depth, 'invalid depth check {:} vs {:}'.format(len(self.Ranges) + 1, depth)
self.avgpool = nn.AvgPool2d(8)
self.classifier = nn.Linear(module.out_dim, num_classes)
self.InShape = None
self.tau = -1
self.search_mode = "basic"
# assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
self.register_parameter('width_attentions', nn.Parameter(torch.Tensor(len(self.Ranges), get_choices(None))))
nn.init.normal_(self.width_attentions, 0, 0.01)
self.apply(initialize_resnet)
# parameters for width
self.Ranges = []
self.layer2indexRange = []
for i, layer in enumerate(self.layers):
start_index = len(self.Ranges)
self.Ranges += layer.get_range()
self.layer2indexRange.append((start_index, len(self.Ranges)))
assert len(self.Ranges) + 1 == depth, "invalid depth check {:} vs {:}".format(
len(self.Ranges) + 1, depth
)
def arch_parameters(self):
return [self.width_attentions]
self.register_parameter(
"width_attentions",
nn.Parameter(torch.Tensor(len(self.Ranges), get_choices(None))),
)
nn.init.normal_(self.width_attentions, 0, 0.01)
self.apply(initialize_resnet)
def base_parameters(self):
return list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters())
def arch_parameters(self):
return [self.width_attentions]
def get_flop(self, mode, config_dict, extra_info):
if config_dict is not None: config_dict = config_dict.copy()
#weights = [F.softmax(x, dim=0) for x in self.width_attentions]
channels = [3]
for i, weight in enumerate(self.width_attentions):
if mode == 'genotype':
def base_parameters(self):
return (
list(self.layers.parameters())
+ list(self.avgpool.parameters())
+ list(self.classifier.parameters())
)
def get_flop(self, mode, config_dict, extra_info):
if config_dict is not None:
config_dict = config_dict.copy()
# weights = [F.softmax(x, dim=0) for x in self.width_attentions]
channels = [3]
for i, weight in enumerate(self.width_attentions):
if mode == "genotype":
with torch.no_grad():
probe = nn.functional.softmax(weight, dim=0)
C = self.Ranges[i][torch.argmax(probe).item()]
elif mode == "max":
C = self.Ranges[i][-1]
elif mode == "fix":
C = int(math.sqrt(extra_info) * self.Ranges[i][-1])
elif mode == "random":
assert isinstance(extra_info, float), "invalid extra_info : {:}".format(
extra_info
)
with torch.no_grad():
prob = nn.functional.softmax(weight, dim=0)
approximate_C = int(math.sqrt(extra_info) * self.Ranges[i][-1])
for j in range(prob.size(0)):
prob[j] = 1 / (
abs(j - (approximate_C - self.Ranges[i][j])) + 0.2
)
C = self.Ranges[i][torch.multinomial(prob, 1, False).item()]
else:
raise ValueError("invalid mode : {:}".format(mode))
channels.append(C)
flop = 0
for i, layer in enumerate(self.layers):
s, e = self.layer2indexRange[i]
xchl = tuple(channels[s : e + 1])
flop += layer.get_flops(xchl)
# the last fc layer
flop += channels[-1] * self.classifier.out_features
if config_dict is None:
return flop / 1e6
else:
config_dict["xchannels"] = channels
config_dict["super_type"] = "infer-width"
config_dict["estimated_FLOP"] = flop / 1e6
return flop / 1e6, config_dict
def get_arch_info(self):
string = "for width, there are {:} attention probabilities.".format(
len(self.width_attentions)
)
discrepancy = []
with torch.no_grad():
probe = nn.functional.softmax(weight, dim=0)
C = self.Ranges[i][ torch.argmax(probe).item() ]
elif mode == 'max':
C = self.Ranges[i][-1]
elif mode == 'fix':
C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] )
elif mode == 'random':
assert isinstance(extra_info, float), 'invalid extra_info : {:}'.format(extra_info)
for i, att in enumerate(self.width_attentions):
prob = nn.functional.softmax(att, dim=0)
prob = prob.cpu()
selc = prob.argmax().item()
prob = prob.tolist()
prob = ["{:.3f}".format(x) for x in prob]
xstring = "{:03d}/{:03d}-th : {:}".format(
i, len(self.width_attentions), " ".join(prob)
)
logt = ["{:.3f}".format(x) for x in att.cpu().tolist()]
xstring += " || {:52s}".format(" ".join(logt))
prob = sorted([float(x) for x in prob])
disc = prob[-1] - prob[-2]
xstring += " || dis={:.2f} || select={:}/{:}".format(
disc, selc, len(prob)
)
discrepancy.append(disc)
string += "\n{:}".format(xstring)
return string, discrepancy
def set_tau(self, tau_max, tau_min, epoch_ratio):
assert (
epoch_ratio >= 0 and epoch_ratio <= 1
), "invalid epoch-ratio : {:}".format(epoch_ratio)
tau = tau_min + (tau_max - tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
self.tau = tau
def get_message(self):
return self.message
def forward(self, inputs):
if self.search_mode == "basic":
return self.basic_forward(inputs)
elif self.search_mode == "search":
return self.search_forward(inputs)
else:
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
def search_forward(self, inputs):
flop_probs = nn.functional.softmax(self.width_attentions, dim=1)
selected_widths, selected_probs = select2withP(self.width_attentions, self.tau)
with torch.no_grad():
prob = nn.functional.softmax(weight, dim=0)
approximate_C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] )
for j in range(prob.size(0)):
prob[j] = 1 / (abs(j - (approximate_C-self.Ranges[i][j])) + 0.2)
C = self.Ranges[i][ torch.multinomial(prob, 1, False).item() ]
else:
raise ValueError('invalid mode : {:}'.format(mode))
channels.append( C )
flop = 0
for i, layer in enumerate(self.layers):
s, e = self.layer2indexRange[i]
xchl = tuple( channels[s:e+1] )
flop+= layer.get_flops(xchl)
# the last fc layer
flop += channels[-1] * self.classifier.out_features
if config_dict is None:
return flop / 1e6
else:
config_dict['xchannels'] = channels
config_dict['super_type'] = 'infer-width'
config_dict['estimated_FLOP'] = flop / 1e6
return flop / 1e6, config_dict
selected_widths = selected_widths.cpu()
def get_arch_info(self):
string = "for width, there are {:} attention probabilities.".format(len(self.width_attentions))
discrepancy = []
with torch.no_grad():
for i, att in enumerate(self.width_attentions):
prob = nn.functional.softmax(att, dim=0)
prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist()
prob = ['{:.3f}'.format(x) for x in prob]
xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.width_attentions), ' '.join(prob))
logt = ['{:.3f}'.format(x) for x in att.cpu().tolist()]
xstring += ' || {:52s}'.format(' '.join(logt))
prob = sorted( [float(x) for x in prob] )
disc = prob[-1] - prob[-2]
xstring += ' || dis={:.2f} || select={:}/{:}'.format(disc, selc, len(prob))
discrepancy.append( disc )
string += '\n{:}'.format(xstring)
return string, discrepancy
x, last_channel_idx, expected_inC, flops = inputs, 0, 3, []
for i, layer in enumerate(self.layers):
selected_w_index = selected_widths[
last_channel_idx : last_channel_idx + layer.num_conv
]
selected_w_probs = selected_probs[
last_channel_idx : last_channel_idx + layer.num_conv
]
layer_prob = flop_probs[
last_channel_idx : last_channel_idx + layer.num_conv
]
x, expected_inC, expected_flop = layer(
(x, expected_inC, layer_prob, selected_w_index, selected_w_probs)
)
last_channel_idx += layer.num_conv
flops.append(expected_flop)
flops.append(expected_inC * (self.classifier.out_features * 1.0 / 1e6))
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = linear_forward(features, self.classifier)
return logits, torch.stack([sum(flops)])
def set_tau(self, tau_max, tau_min, epoch_ratio):
assert epoch_ratio >= 0 and epoch_ratio <= 1, 'invalid epoch-ratio : {:}'.format(epoch_ratio)
tau = tau_min + (tau_max-tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
self.tau = tau
def get_message(self):
return self.message
def forward(self, inputs):
if self.search_mode == 'basic':
return self.basic_forward(inputs)
elif self.search_mode == 'search':
return self.search_forward(inputs)
else:
raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
def search_forward(self, inputs):
flop_probs = nn.functional.softmax(self.width_attentions, dim=1)
selected_widths, selected_probs = select2withP(self.width_attentions, self.tau)
with torch.no_grad():
selected_widths = selected_widths.cpu()
x, last_channel_idx, expected_inC, flops = inputs, 0, 3, []
for i, layer in enumerate(self.layers):
selected_w_index = selected_widths[last_channel_idx: last_channel_idx+layer.num_conv]
selected_w_probs = selected_probs[last_channel_idx: last_channel_idx+layer.num_conv]
layer_prob = flop_probs[last_channel_idx: last_channel_idx+layer.num_conv]
x, expected_inC, expected_flop = layer( (x, expected_inC, layer_prob, selected_w_index, selected_w_probs) )
last_channel_idx += layer.num_conv
flops.append( expected_flop )
flops.append( expected_inC * (self.classifier.out_features*1.0/1e6) )
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = linear_forward(features, self.classifier)
return logits, torch.stack( [sum(flops)] )
def basic_forward(self, inputs):
if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1))
x = inputs
for i, layer in enumerate(self.layers):
x = layer( x )
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = self.classifier(features)
return features, logits
def basic_forward(self, inputs):
if self.InShape is None:
self.InShape = (inputs.size(-2), inputs.size(-1))
x = inputs
for i, layer in enumerate(self.layers):
x = layer(x)
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = self.classifier(features)
return features, logits

File diff suppressed because it is too large Load Diff

View File

@@ -4,313 +4,463 @@
import math, torch
import torch.nn as nn
from ..initialization import initialize_resnet
from ..SharedUtils import additive_func
from .SoftSelect import select2withP, ChannelWiseInter
from .SoftSelect import linear_forward
from .SoftSelect import get_width_choices as get_choices
from ..SharedUtils import additive_func
from .SoftSelect import select2withP, ChannelWiseInter
from .SoftSelect import linear_forward
from .SoftSelect import get_width_choices as get_choices
def conv_forward(inputs, conv, choices):
iC = conv.in_channels
fill_size = list(inputs.size())
fill_size[1] = iC - fill_size[1]
filled = torch.zeros(fill_size, device=inputs.device)
xinputs = torch.cat((inputs, filled), dim=1)
outputs = conv(xinputs)
selecteds = [outputs[:,:oC] for oC in choices]
return selecteds
iC = conv.in_channels
fill_size = list(inputs.size())
fill_size[1] = iC - fill_size[1]
filled = torch.zeros(fill_size, device=inputs.device)
xinputs = torch.cat((inputs, filled), dim=1)
outputs = conv(xinputs)
selecteds = [outputs[:, :oC] for oC in choices]
return selecteds
class ConvBNReLU(nn.Module):
num_conv = 1
def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu):
super(ConvBNReLU, self).__init__()
self.InShape = None
self.OutShape = None
self.choices = get_choices(nOut)
self.register_buffer('choices_tensor', torch.Tensor( self.choices ))
num_conv = 1
if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
else : self.avg = None
self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias)
#if has_bn : self.bn = nn.BatchNorm2d(nOut)
#else : self.bn = None
self.has_bn = has_bn
self.BNs = nn.ModuleList()
for i, _out in enumerate(self.choices):
self.BNs.append(nn.BatchNorm2d(_out))
if has_relu: self.relu = nn.ReLU(inplace=True)
else : self.relu = None
self.in_dim = nIn
self.out_dim = nOut
self.search_mode = 'basic'
def __init__(
self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu
):
super(ConvBNReLU, self).__init__()
self.InShape = None
self.OutShape = None
self.choices = get_choices(nOut)
self.register_buffer("choices_tensor", torch.Tensor(self.choices))
def get_flops(self, channels, check_range=True, divide=1):
iC, oC = channels
if check_range: assert iC <= self.conv.in_channels and oC <= self.conv.out_channels, '{:} vs {:} | {:} vs {:}'.format(iC, self.conv.in_channels, oC, self.conv.out_channels)
assert isinstance(self.InShape, tuple) and len(self.InShape) == 2, 'invalid in-shape : {:}'.format(self.InShape)
assert isinstance(self.OutShape, tuple) and len(self.OutShape) == 2, 'invalid out-shape : {:}'.format(self.OutShape)
#conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
conv_per_position_flops = (self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups)
all_positions = self.OutShape[0] * self.OutShape[1]
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
if self.conv.bias is not None: flops += all_positions / divide
return flops
if has_avg:
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
else:
self.avg = None
self.conv = nn.Conv2d(
nIn,
nOut,
kernel_size=kernel,
stride=stride,
padding=padding,
dilation=1,
groups=1,
bias=bias,
)
# if has_bn : self.bn = nn.BatchNorm2d(nOut)
# else : self.bn = None
self.has_bn = has_bn
self.BNs = nn.ModuleList()
for i, _out in enumerate(self.choices):
self.BNs.append(nn.BatchNorm2d(_out))
if has_relu:
self.relu = nn.ReLU(inplace=True)
else:
self.relu = None
self.in_dim = nIn
self.out_dim = nOut
self.search_mode = "basic"
def get_range(self):
return [self.choices]
def get_flops(self, channels, check_range=True, divide=1):
iC, oC = channels
if check_range:
assert (
iC <= self.conv.in_channels and oC <= self.conv.out_channels
), "{:} vs {:} | {:} vs {:}".format(
iC, self.conv.in_channels, oC, self.conv.out_channels
)
assert (
isinstance(self.InShape, tuple) and len(self.InShape) == 2
), "invalid in-shape : {:}".format(self.InShape)
assert (
isinstance(self.OutShape, tuple) and len(self.OutShape) == 2
), "invalid out-shape : {:}".format(self.OutShape)
# conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
conv_per_position_flops = (
self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups
)
all_positions = self.OutShape[0] * self.OutShape[1]
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
if self.conv.bias is not None:
flops += all_positions / divide
return flops
def forward(self, inputs):
if self.search_mode == 'basic':
return self.basic_forward(inputs)
elif self.search_mode == 'search':
return self.search_forward(inputs)
else:
raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
def get_range(self):
return [self.choices]
def search_forward(self, tuple_inputs):
assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) )
inputs, expected_inC, probability, index, prob = tuple_inputs
index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob)
probability = torch.squeeze(probability)
assert len(index) == 2, 'invalid length : {:}'.format(index)
# compute expected flop
#coordinates = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability)
expected_outC = (self.choices_tensor * probability).sum()
expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6)
if self.avg : out = self.avg( inputs )
else : out = inputs
# convolutional layer
out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index])
out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)]
# merge
out_channel = max([x.size(1) for x in out_bns])
outA = ChannelWiseInter(out_bns[0], out_channel)
outB = ChannelWiseInter(out_bns[1], out_channel)
out = outA * prob[0] + outB * prob[1]
#out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1])
def forward(self, inputs):
if self.search_mode == "basic":
return self.basic_forward(inputs)
elif self.search_mode == "search":
return self.search_forward(inputs)
else:
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
if self.relu: out = self.relu( out )
else : out = out
return out, expected_outC, expected_flop
def search_forward(self, tuple_inputs):
assert (
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
), "invalid type input : {:}".format(type(tuple_inputs))
inputs, expected_inC, probability, index, prob = tuple_inputs
index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob)
probability = torch.squeeze(probability)
assert len(index) == 2, "invalid length : {:}".format(index)
# compute expected flop
# coordinates = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability)
expected_outC = (self.choices_tensor * probability).sum()
expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6)
if self.avg:
out = self.avg(inputs)
else:
out = inputs
# convolutional layer
out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index])
out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)]
# merge
out_channel = max([x.size(1) for x in out_bns])
outA = ChannelWiseInter(out_bns[0], out_channel)
outB = ChannelWiseInter(out_bns[1], out_channel)
out = outA * prob[0] + outB * prob[1]
# out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1])
def basic_forward(self, inputs):
if self.avg : out = self.avg( inputs )
else : out = inputs
conv = self.conv( out )
if self.has_bn:out= self.BNs[-1]( conv )
else : out = conv
if self.relu: out = self.relu( out )
else : out = out
if self.InShape is None:
self.InShape = (inputs.size(-2), inputs.size(-1))
self.OutShape = (out.size(-2) , out.size(-1))
return out
if self.relu:
out = self.relu(out)
else:
out = out
return out, expected_outC, expected_flop
def basic_forward(self, inputs):
if self.avg:
out = self.avg(inputs)
else:
out = inputs
conv = self.conv(out)
if self.has_bn:
out = self.BNs[-1](conv)
else:
out = conv
if self.relu:
out = self.relu(out)
else:
out = out
if self.InShape is None:
self.InShape = (inputs.size(-2), inputs.size(-1))
self.OutShape = (out.size(-2), out.size(-1))
return out
class SimBlock(nn.Module):
expansion = 1
num_conv = 1
def __init__(self, inplanes, planes, stride):
super(SimBlock, self).__init__()
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
self.conv = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
if stride == 2:
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
elif inplanes != planes:
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
else:
self.downsample = None
self.out_dim = planes
self.search_mode = 'basic'
expansion = 1
num_conv = 1
def get_range(self):
return self.conv.get_range()
def __init__(self, inplanes, planes, stride):
super(SimBlock, self).__init__()
assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
self.conv = ConvBNReLU(
inplanes,
planes,
3,
stride,
1,
False,
has_avg=False,
has_bn=True,
has_relu=True,
)
if stride == 2:
self.downsample = ConvBNReLU(
inplanes,
planes,
1,
1,
0,
False,
has_avg=True,
has_bn=False,
has_relu=False,
)
elif inplanes != planes:
self.downsample = ConvBNReLU(
inplanes,
planes,
1,
1,
0,
False,
has_avg=False,
has_bn=True,
has_relu=False,
)
else:
self.downsample = None
self.out_dim = planes
self.search_mode = "basic"
def get_flops(self, channels):
assert len(channels) == 2, 'invalid channels : {:}'.format(channels)
flop_A = self.conv.get_flops([channels[0], channels[1]])
if hasattr(self.downsample, 'get_flops'):
flop_C = self.downsample.get_flops([channels[0], channels[-1]])
else:
flop_C = 0
if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train
flop_C = channels[0] * channels[-1] * self.conv.OutShape[0] * self.conv.OutShape[1]
return flop_A + flop_C
def get_range(self):
return self.conv.get_range()
def forward(self, inputs):
if self.search_mode == 'basic' : return self.basic_forward(inputs)
elif self.search_mode == 'search': return self.search_forward(inputs)
else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
def get_flops(self, channels):
assert len(channels) == 2, "invalid channels : {:}".format(channels)
flop_A = self.conv.get_flops([channels[0], channels[1]])
if hasattr(self.downsample, "get_flops"):
flop_C = self.downsample.get_flops([channels[0], channels[-1]])
else:
flop_C = 0
if (
channels[0] != channels[-1] and self.downsample is None
): # this short-cut will be added during the infer-train
flop_C = (
channels[0]
* channels[-1]
* self.conv.OutShape[0]
* self.conv.OutShape[1]
)
return flop_A + flop_C
def search_forward(self, tuple_inputs):
assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) )
inputs, expected_inC, probability, indexes, probs = tuple_inputs
assert indexes.size(0) == 1 and probs.size(0) == 1 and probability.size(0) == 1, 'invalid size : {:}, {:}, {:}'.format(indexes.size(), probs.size(), probability.size())
out, expected_next_inC, expected_flop = self.conv( (inputs, expected_inC , probability[0], indexes[0], probs[0]) )
if self.downsample is not None:
residual, _, expected_flop_c = self.downsample( (inputs, expected_inC , probability[-1], indexes[-1], probs[-1]) )
else:
residual, expected_flop_c = inputs, 0
out = additive_func(residual, out)
return nn.functional.relu(out, inplace=True), expected_next_inC, sum([expected_flop, expected_flop_c])
def forward(self, inputs):
if self.search_mode == "basic":
return self.basic_forward(inputs)
elif self.search_mode == "search":
return self.search_forward(inputs)
else:
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
def basic_forward(self, inputs):
basicblock = self.conv(inputs)
if self.downsample is not None: residual = self.downsample(inputs)
else : residual = inputs
out = additive_func(residual, basicblock)
return nn.functional.relu(out, inplace=True)
def search_forward(self, tuple_inputs):
assert (
isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5
), "invalid type input : {:}".format(type(tuple_inputs))
inputs, expected_inC, probability, indexes, probs = tuple_inputs
assert (
indexes.size(0) == 1 and probs.size(0) == 1 and probability.size(0) == 1
), "invalid size : {:}, {:}, {:}".format(
indexes.size(), probs.size(), probability.size()
)
out, expected_next_inC, expected_flop = self.conv(
(inputs, expected_inC, probability[0], indexes[0], probs[0])
)
if self.downsample is not None:
residual, _, expected_flop_c = self.downsample(
(inputs, expected_inC, probability[-1], indexes[-1], probs[-1])
)
else:
residual, expected_flop_c = inputs, 0
out = additive_func(residual, out)
return (
nn.functional.relu(out, inplace=True),
expected_next_inC,
sum([expected_flop, expected_flop_c]),
)
def basic_forward(self, inputs):
basicblock = self.conv(inputs)
if self.downsample is not None:
residual = self.downsample(inputs)
else:
residual = inputs
out = additive_func(residual, basicblock)
return nn.functional.relu(out, inplace=True)
class SearchWidthSimResNet(nn.Module):
def __init__(self, depth, num_classes):
super(SearchWidthSimResNet, self).__init__()
def __init__(self, depth, num_classes):
super(SearchWidthSimResNet, self).__init__()
assert (
depth - 2
) % 3 == 0, "depth should be one of 5, 8, 11, 14, ... instead of {:}".format(
depth
)
layer_blocks = (depth - 2) // 3
self.message = (
"SearchWidthSimResNet : Depth : {:} , Layers for each block : {:}".format(
depth, layer_blocks
)
)
self.num_classes = num_classes
self.channels = [16]
self.layers = nn.ModuleList(
[
ConvBNReLU(
3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True
)
]
)
self.InShape = None
for stage in range(3):
for iL in range(layer_blocks):
iC = self.channels[-1]
planes = 16 * (2 ** stage)
stride = 2 if stage > 0 and iL == 0 else 1
module = SimBlock(iC, planes, stride)
self.channels.append(module.out_dim)
self.layers.append(module)
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(
stage,
iL,
layer_blocks,
len(self.layers) - 1,
iC,
module.out_dim,
stride,
)
assert (depth - 2) % 3 == 0, 'depth should be one of 5, 8, 11, 14, ... instead of {:}'.format(depth)
layer_blocks = (depth - 2) // 3
self.message = 'SearchWidthSimResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks)
self.num_classes = num_classes
self.channels = [16]
self.layers = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] )
self.InShape = None
for stage in range(3):
for iL in range(layer_blocks):
iC = self.channels[-1]
planes = 16 * (2**stage)
stride = 2 if stage > 0 and iL == 0 else 1
module = SimBlock(iC, planes, stride)
self.channels.append( module.out_dim )
self.layers.append ( module )
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride)
self.avgpool = nn.AvgPool2d(8)
self.classifier = nn.Linear(module.out_dim, num_classes)
self.InShape = None
self.tau = -1
self.search_mode = 'basic'
#assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
# parameters for width
self.Ranges = []
self.layer2indexRange = []
for i, layer in enumerate(self.layers):
start_index = len(self.Ranges)
self.Ranges += layer.get_range()
self.layer2indexRange.append( (start_index, len(self.Ranges)) )
assert len(self.Ranges) + 1 == depth, 'invalid depth check {:} vs {:}'.format(len(self.Ranges) + 1, depth)
self.avgpool = nn.AvgPool2d(8)
self.classifier = nn.Linear(module.out_dim, num_classes)
self.InShape = None
self.tau = -1
self.search_mode = "basic"
# assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
self.register_parameter('width_attentions', nn.Parameter(torch.Tensor(len(self.Ranges), get_choices(None))))
nn.init.normal_(self.width_attentions, 0, 0.01)
self.apply(initialize_resnet)
# parameters for width
self.Ranges = []
self.layer2indexRange = []
for i, layer in enumerate(self.layers):
start_index = len(self.Ranges)
self.Ranges += layer.get_range()
self.layer2indexRange.append((start_index, len(self.Ranges)))
assert len(self.Ranges) + 1 == depth, "invalid depth check {:} vs {:}".format(
len(self.Ranges) + 1, depth
)
def arch_parameters(self):
return [self.width_attentions]
self.register_parameter(
"width_attentions",
nn.Parameter(torch.Tensor(len(self.Ranges), get_choices(None))),
)
nn.init.normal_(self.width_attentions, 0, 0.01)
self.apply(initialize_resnet)
def base_parameters(self):
return list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters())
def arch_parameters(self):
return [self.width_attentions]
def get_flop(self, mode, config_dict, extra_info):
if config_dict is not None: config_dict = config_dict.copy()
#weights = [F.softmax(x, dim=0) for x in self.width_attentions]
channels = [3]
for i, weight in enumerate(self.width_attentions):
if mode == 'genotype':
def base_parameters(self):
return (
list(self.layers.parameters())
+ list(self.avgpool.parameters())
+ list(self.classifier.parameters())
)
def get_flop(self, mode, config_dict, extra_info):
if config_dict is not None:
config_dict = config_dict.copy()
# weights = [F.softmax(x, dim=0) for x in self.width_attentions]
channels = [3]
for i, weight in enumerate(self.width_attentions):
if mode == "genotype":
with torch.no_grad():
probe = nn.functional.softmax(weight, dim=0)
C = self.Ranges[i][torch.argmax(probe).item()]
elif mode == "max":
C = self.Ranges[i][-1]
elif mode == "fix":
C = int(math.sqrt(extra_info) * self.Ranges[i][-1])
elif mode == "random":
assert isinstance(extra_info, float), "invalid extra_info : {:}".format(
extra_info
)
with torch.no_grad():
prob = nn.functional.softmax(weight, dim=0)
approximate_C = int(math.sqrt(extra_info) * self.Ranges[i][-1])
for j in range(prob.size(0)):
prob[j] = 1 / (
abs(j - (approximate_C - self.Ranges[i][j])) + 0.2
)
C = self.Ranges[i][torch.multinomial(prob, 1, False).item()]
else:
raise ValueError("invalid mode : {:}".format(mode))
channels.append(C)
flop = 0
for i, layer in enumerate(self.layers):
s, e = self.layer2indexRange[i]
xchl = tuple(channels[s : e + 1])
flop += layer.get_flops(xchl)
# the last fc layer
flop += channels[-1] * self.classifier.out_features
if config_dict is None:
return flop / 1e6
else:
config_dict["xchannels"] = channels
config_dict["super_type"] = "infer-width"
config_dict["estimated_FLOP"] = flop / 1e6
return flop / 1e6, config_dict
def get_arch_info(self):
string = "for width, there are {:} attention probabilities.".format(
len(self.width_attentions)
)
discrepancy = []
with torch.no_grad():
probe = nn.functional.softmax(weight, dim=0)
C = self.Ranges[i][ torch.argmax(probe).item() ]
elif mode == 'max':
C = self.Ranges[i][-1]
elif mode == 'fix':
C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] )
elif mode == 'random':
assert isinstance(extra_info, float), 'invalid extra_info : {:}'.format(extra_info)
for i, att in enumerate(self.width_attentions):
prob = nn.functional.softmax(att, dim=0)
prob = prob.cpu()
selc = prob.argmax().item()
prob = prob.tolist()
prob = ["{:.3f}".format(x) for x in prob]
xstring = "{:03d}/{:03d}-th : {:}".format(
i, len(self.width_attentions), " ".join(prob)
)
logt = ["{:.3f}".format(x) for x in att.cpu().tolist()]
xstring += " || {:52s}".format(" ".join(logt))
prob = sorted([float(x) for x in prob])
disc = prob[-1] - prob[-2]
xstring += " || dis={:.2f} || select={:}/{:}".format(
disc, selc, len(prob)
)
discrepancy.append(disc)
string += "\n{:}".format(xstring)
return string, discrepancy
def set_tau(self, tau_max, tau_min, epoch_ratio):
assert (
epoch_ratio >= 0 and epoch_ratio <= 1
), "invalid epoch-ratio : {:}".format(epoch_ratio)
tau = tau_min + (tau_max - tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
self.tau = tau
def get_message(self):
return self.message
def forward(self, inputs):
if self.search_mode == "basic":
return self.basic_forward(inputs)
elif self.search_mode == "search":
return self.search_forward(inputs)
else:
raise ValueError("invalid search_mode = {:}".format(self.search_mode))
def search_forward(self, inputs):
flop_probs = nn.functional.softmax(self.width_attentions, dim=1)
selected_widths, selected_probs = select2withP(self.width_attentions, self.tau)
with torch.no_grad():
prob = nn.functional.softmax(weight, dim=0)
approximate_C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] )
for j in range(prob.size(0)):
prob[j] = 1 / (abs(j - (approximate_C-self.Ranges[i][j])) + 0.2)
C = self.Ranges[i][ torch.multinomial(prob, 1, False).item() ]
else:
raise ValueError('invalid mode : {:}'.format(mode))
channels.append( C )
flop = 0
for i, layer in enumerate(self.layers):
s, e = self.layer2indexRange[i]
xchl = tuple( channels[s:e+1] )
flop+= layer.get_flops(xchl)
# the last fc layer
flop += channels[-1] * self.classifier.out_features
if config_dict is None:
return flop / 1e6
else:
config_dict['xchannels'] = channels
config_dict['super_type'] = 'infer-width'
config_dict['estimated_FLOP'] = flop / 1e6
return flop / 1e6, config_dict
selected_widths = selected_widths.cpu()
def get_arch_info(self):
string = "for width, there are {:} attention probabilities.".format(len(self.width_attentions))
discrepancy = []
with torch.no_grad():
for i, att in enumerate(self.width_attentions):
prob = nn.functional.softmax(att, dim=0)
prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist()
prob = ['{:.3f}'.format(x) for x in prob]
xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.width_attentions), ' '.join(prob))
logt = ['{:.3f}'.format(x) for x in att.cpu().tolist()]
xstring += ' || {:52s}'.format(' '.join(logt))
prob = sorted( [float(x) for x in prob] )
disc = prob[-1] - prob[-2]
xstring += ' || dis={:.2f} || select={:}/{:}'.format(disc, selc, len(prob))
discrepancy.append( disc )
string += '\n{:}'.format(xstring)
return string, discrepancy
x, last_channel_idx, expected_inC, flops = inputs, 0, 3, []
for i, layer in enumerate(self.layers):
selected_w_index = selected_widths[
last_channel_idx : last_channel_idx + layer.num_conv
]
selected_w_probs = selected_probs[
last_channel_idx : last_channel_idx + layer.num_conv
]
layer_prob = flop_probs[
last_channel_idx : last_channel_idx + layer.num_conv
]
x, expected_inC, expected_flop = layer(
(x, expected_inC, layer_prob, selected_w_index, selected_w_probs)
)
last_channel_idx += layer.num_conv
flops.append(expected_flop)
flops.append(expected_inC * (self.classifier.out_features * 1.0 / 1e6))
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = linear_forward(features, self.classifier)
return logits, torch.stack([sum(flops)])
def set_tau(self, tau_max, tau_min, epoch_ratio):
assert epoch_ratio >= 0 and epoch_ratio <= 1, 'invalid epoch-ratio : {:}'.format(epoch_ratio)
tau = tau_min + (tau_max-tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
self.tau = tau
def get_message(self):
return self.message
def forward(self, inputs):
if self.search_mode == 'basic':
return self.basic_forward(inputs)
elif self.search_mode == 'search':
return self.search_forward(inputs)
else:
raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
def search_forward(self, inputs):
flop_probs = nn.functional.softmax(self.width_attentions, dim=1)
selected_widths, selected_probs = select2withP(self.width_attentions, self.tau)
with torch.no_grad():
selected_widths = selected_widths.cpu()
x, last_channel_idx, expected_inC, flops = inputs, 0, 3, []
for i, layer in enumerate(self.layers):
selected_w_index = selected_widths[last_channel_idx: last_channel_idx+layer.num_conv]
selected_w_probs = selected_probs[last_channel_idx: last_channel_idx+layer.num_conv]
layer_prob = flop_probs[last_channel_idx: last_channel_idx+layer.num_conv]
x, expected_inC, expected_flop = layer( (x, expected_inC, layer_prob, selected_w_index, selected_w_probs) )
last_channel_idx += layer.num_conv
flops.append( expected_flop )
flops.append( expected_inC * (self.classifier.out_features*1.0/1e6) )
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = linear_forward(features, self.classifier)
return logits, torch.stack( [sum(flops)] )
def basic_forward(self, inputs):
if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1))
x = inputs
for i, layer in enumerate(self.layers):
x = layer( x )
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = self.classifier(features)
return features, logits
def basic_forward(self, inputs):
if self.InShape is None:
self.InShape = (inputs.size(-2), inputs.size(-1))
x = inputs
for i, layer in enumerate(self.layers):
x = layer(x)
features = self.avgpool(x)
features = features.view(features.size(0), -1)
logits = self.classifier(features)
return features, logits

View File

@@ -6,106 +6,123 @@ import torch.nn as nn
def select2withP(logits, tau, just_prob=False, num=2, eps=1e-7):
if tau <= 0:
new_logits = logits
probs = nn.functional.softmax(new_logits, dim=1)
else :
while True: # a trick to avoid the gumbels bug
gumbels = -torch.empty_like(logits).exponential_().log()
new_logits = (logits.log_softmax(dim=1) + gumbels) / tau
probs = nn.functional.softmax(new_logits, dim=1)
if (not torch.isinf(gumbels).any()) and (not torch.isinf(probs).any()) and (not torch.isnan(probs).any()): break
if tau <= 0:
new_logits = logits
probs = nn.functional.softmax(new_logits, dim=1)
else:
while True: # a trick to avoid the gumbels bug
gumbels = -torch.empty_like(logits).exponential_().log()
new_logits = (logits.log_softmax(dim=1) + gumbels) / tau
probs = nn.functional.softmax(new_logits, dim=1)
if (
(not torch.isinf(gumbels).any())
and (not torch.isinf(probs).any())
and (not torch.isnan(probs).any())
):
break
if just_prob: return probs
if just_prob:
return probs
#with torch.no_grad(): # add eps for unexpected torch error
# probs = nn.functional.softmax(new_logits, dim=1)
# selected_index = torch.multinomial(probs + eps, 2, False)
with torch.no_grad(): # add eps for unexpected torch error
probs = probs.cpu()
selected_index = torch.multinomial(probs + eps, num, False).to(logits.device)
selected_logit = torch.gather(new_logits, 1, selected_index)
selcted_probs = nn.functional.softmax(selected_logit, dim=1)
return selected_index, selcted_probs
# with torch.no_grad(): # add eps for unexpected torch error
# probs = nn.functional.softmax(new_logits, dim=1)
# selected_index = torch.multinomial(probs + eps, 2, False)
with torch.no_grad(): # add eps for unexpected torch error
probs = probs.cpu()
selected_index = torch.multinomial(probs + eps, num, False).to(logits.device)
selected_logit = torch.gather(new_logits, 1, selected_index)
selcted_probs = nn.functional.softmax(selected_logit, dim=1)
return selected_index, selcted_probs
def ChannelWiseInter(inputs, oC, mode='v2'):
if mode == 'v1':
return ChannelWiseInterV1(inputs, oC)
elif mode == 'v2':
return ChannelWiseInterV2(inputs, oC)
else:
raise ValueError('invalid mode : {:}'.format(mode))
def ChannelWiseInter(inputs, oC, mode="v2"):
if mode == "v1":
return ChannelWiseInterV1(inputs, oC)
elif mode == "v2":
return ChannelWiseInterV2(inputs, oC)
else:
raise ValueError("invalid mode : {:}".format(mode))
def ChannelWiseInterV1(inputs, oC):
assert inputs.dim() == 4, 'invalid dimension : {:}'.format(inputs.size())
def start_index(a, b, c):
return int( math.floor(float(a * c) / b) )
def end_index(a, b, c):
return int( math.ceil(float((a + 1) * c) / b) )
batch, iC, H, W = inputs.size()
outputs = torch.zeros((batch, oC, H, W), dtype=inputs.dtype, device=inputs.device)
if iC == oC: return inputs
for ot in range(oC):
istartT, iendT = start_index(ot, oC, iC), end_index(ot, oC, iC)
values = inputs[:, istartT:iendT].mean(dim=1)
outputs[:, ot, :, :] = values
return outputs
assert inputs.dim() == 4, "invalid dimension : {:}".format(inputs.size())
def start_index(a, b, c):
return int(math.floor(float(a * c) / b))
def end_index(a, b, c):
return int(math.ceil(float((a + 1) * c) / b))
batch, iC, H, W = inputs.size()
outputs = torch.zeros((batch, oC, H, W), dtype=inputs.dtype, device=inputs.device)
if iC == oC:
return inputs
for ot in range(oC):
istartT, iendT = start_index(ot, oC, iC), end_index(ot, oC, iC)
values = inputs[:, istartT:iendT].mean(dim=1)
outputs[:, ot, :, :] = values
return outputs
def ChannelWiseInterV2(inputs, oC):
assert inputs.dim() == 4, 'invalid dimension : {:}'.format(inputs.size())
batch, C, H, W = inputs.size()
if C == oC: return inputs
else : return nn.functional.adaptive_avg_pool3d(inputs, (oC,H,W))
#inputs_5D = inputs.view(batch, 1, C, H, W)
#otputs_5D = nn.functional.interpolate(inputs_5D, (oC,H,W), None, 'area', None)
#otputs = otputs_5D.view(batch, oC, H, W)
#otputs_5D = nn.functional.interpolate(inputs_5D, (oC,H,W), None, 'trilinear', False)
#return otputs
assert inputs.dim() == 4, "invalid dimension : {:}".format(inputs.size())
batch, C, H, W = inputs.size()
if C == oC:
return inputs
else:
return nn.functional.adaptive_avg_pool3d(inputs, (oC, H, W))
# inputs_5D = inputs.view(batch, 1, C, H, W)
# otputs_5D = nn.functional.interpolate(inputs_5D, (oC,H,W), None, 'area', None)
# otputs = otputs_5D.view(batch, oC, H, W)
# otputs_5D = nn.functional.interpolate(inputs_5D, (oC,H,W), None, 'trilinear', False)
# return otputs
def linear_forward(inputs, linear):
if linear is None: return inputs
iC = inputs.size(1)
weight = linear.weight[:, :iC]
if linear.bias is None: bias = None
else : bias = linear.bias
return nn.functional.linear(inputs, weight, bias)
if linear is None:
return inputs
iC = inputs.size(1)
weight = linear.weight[:, :iC]
if linear.bias is None:
bias = None
else:
bias = linear.bias
return nn.functional.linear(inputs, weight, bias)
def get_width_choices(nOut):
xsrange = [0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
if nOut is None:
return len(xsrange)
else:
Xs = [int(nOut * i) for i in xsrange]
#xs = [ int(nOut * i // 10) for i in range(2, 11)]
#Xs = [x for i, x in enumerate(xs) if i+1 == len(xs) or xs[i+1] > x+1]
Xs = sorted( list( set(Xs) ) )
return tuple(Xs)
xsrange = [0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
if nOut is None:
return len(xsrange)
else:
Xs = [int(nOut * i) for i in xsrange]
# xs = [ int(nOut * i // 10) for i in range(2, 11)]
# Xs = [x for i, x in enumerate(xs) if i+1 == len(xs) or xs[i+1] > x+1]
Xs = sorted(list(set(Xs)))
return tuple(Xs)
def get_depth_choices(nDepth):
if nDepth is None:
return 3
else:
assert nDepth >= 3, 'nDepth should be greater than 2 vs {:}'.format(nDepth)
if nDepth == 1 : return (1, 1, 1)
elif nDepth == 2: return (1, 1, 2)
elif nDepth >= 3:
return (nDepth//3, nDepth*2//3, nDepth)
if nDepth is None:
return 3
else:
raise ValueError('invalid Depth : {:}'.format(nDepth))
assert nDepth >= 3, "nDepth should be greater than 2 vs {:}".format(nDepth)
if nDepth == 1:
return (1, 1, 1)
elif nDepth == 2:
return (1, 1, 2)
elif nDepth >= 3:
return (nDepth // 3, nDepth * 2 // 3, nDepth)
else:
raise ValueError("invalid Depth : {:}".format(nDepth))
def drop_path(x, drop_prob):
if drop_prob > 0.:
keep_prob = 1. - drop_prob
mask = x.new_zeros(x.size(0), 1, 1, 1)
mask = mask.bernoulli_(keep_prob)
x = x * (mask / keep_prob)
#x.div_(keep_prob)
#x.mul_(mask)
return x
if drop_prob > 0.0:
keep_prob = 1.0 - drop_prob
mask = x.new_zeros(x.size(0), 1, 1, 1)
mask = mask.bernoulli_(keep_prob)
x = x * (mask / keep_prob)
# x.div_(keep_prob)
# x.mul_(mask)
return x

View File

@@ -3,7 +3,7 @@
##################################################
from .SearchCifarResNet_width import SearchWidthCifarResNet
from .SearchCifarResNet_depth import SearchDepthCifarResNet
from .SearchCifarResNet import SearchShapeCifarResNet
from .SearchSimResNet_width import SearchWidthSimResNet
from .SearchImagenetResNet import SearchShapeImagenetResNet
from .SearchCifarResNet import SearchShapeCifarResNet
from .SearchSimResNet_width import SearchWidthSimResNet
from .SearchImagenetResNet import SearchShapeImagenetResNet
from .generic_size_tiny_cell_model import GenericNAS301Model

View File

@@ -15,152 +15,195 @@ from models.shape_searchs.SoftSelect import select2withP, ChannelWiseInter
class GenericNAS301Model(nn.Module):
def __init__(
self,
candidate_Cs: List[int],
max_num_Cs: int,
genotype: Any,
num_classes: int,
affine: bool,
track_running_stats: bool,
):
super(GenericNAS301Model, self).__init__()
self._max_num_Cs = max_num_Cs
self._candidate_Cs = candidate_Cs
if max_num_Cs % 3 != 2:
raise ValueError("invalid number of layers : {:}".format(max_num_Cs))
self._num_stage = N = max_num_Cs // 3
self._max_C = max(candidate_Cs)
def __init__(self, candidate_Cs: List[int], max_num_Cs: int, genotype: Any, num_classes: int, affine: bool, track_running_stats: bool):
super(GenericNAS301Model, self).__init__()
self._max_num_Cs = max_num_Cs
self._candidate_Cs = candidate_Cs
if max_num_Cs % 3 != 2:
raise ValueError('invalid number of layers : {:}'.format(max_num_Cs))
self._num_stage = N = max_num_Cs // 3
self._max_C = max(candidate_Cs)
stem = nn.Sequential(
nn.Conv2d(3, self._max_C, kernel_size=3, padding=1, bias=not affine),
nn.BatchNorm2d(
self._max_C, affine=affine, track_running_stats=track_running_stats
),
)
stem = nn.Sequential(
nn.Conv2d(3, self._max_C, kernel_size=3, padding=1, bias=not affine),
nn.BatchNorm2d(self._max_C, affine=affine, track_running_stats=track_running_stats))
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
c_prev = self._max_C
self._cells = nn.ModuleList()
self._cells.append(stem)
for index, reduction in enumerate(layer_reductions):
if reduction:
cell = ResNetBasicblock(c_prev, self._max_C, 2, True)
else:
cell = InferCell(
genotype, c_prev, self._max_C, 1, affine, track_running_stats
)
self._cells.append(cell)
c_prev = cell.out_dim
self._num_layer = len(self._cells)
c_prev = self._max_C
self._cells = nn.ModuleList()
self._cells.append(stem)
for index, reduction in enumerate(layer_reductions):
if reduction : cell = ResNetBasicblock(c_prev, self._max_C, 2, True)
else : cell = InferCell(genotype, c_prev, self._max_C, 1, affine, track_running_stats)
self._cells.append(cell)
c_prev = cell.out_dim
self._num_layer = len(self._cells)
self.lastact = nn.Sequential(
nn.BatchNorm2d(
c_prev, affine=affine, track_running_stats=track_running_stats
),
nn.ReLU(inplace=True),
)
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(c_prev, num_classes)
# algorithm related
self.register_buffer("_tau", torch.zeros(1))
self._algo = None
self._warmup_ratio = None
self.lastact = nn.Sequential(nn.BatchNorm2d(c_prev, affine=affine, track_running_stats=track_running_stats), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(c_prev, num_classes)
# algorithm related
self.register_buffer('_tau', torch.zeros(1))
self._algo = None
self._warmup_ratio = None
def set_algo(self, algo: Text):
# used for searching
assert self._algo is None, "This functioin can only be called once."
assert algo in ["mask_gumbel", "mask_rl", "tas"], "invalid algo : {:}".format(
algo
)
self._algo = algo
self._arch_parameters = nn.Parameter(
1e-3 * torch.randn(self._max_num_Cs, len(self._candidate_Cs))
)
# if algo == 'mask_gumbel' or algo == 'mask_rl':
self.register_buffer(
"_masks", torch.zeros(len(self._candidate_Cs), max(self._candidate_Cs))
)
for i in range(len(self._candidate_Cs)):
self._masks.data[i, : self._candidate_Cs[i]] = 1
def set_algo(self, algo: Text):
# used for searching
assert self._algo is None, 'This functioin can only be called once.'
assert algo in ['mask_gumbel', 'mask_rl', 'tas'], 'invalid algo : {:}'.format(algo)
self._algo = algo
self._arch_parameters = nn.Parameter(1e-3*torch.randn(self._max_num_Cs, len(self._candidate_Cs)))
# if algo == 'mask_gumbel' or algo == 'mask_rl':
self.register_buffer('_masks', torch.zeros(len(self._candidate_Cs), max(self._candidate_Cs)))
for i in range(len(self._candidate_Cs)):
self._masks.data[i, :self._candidate_Cs[i]] = 1
@property
def tau(self):
return self._tau
@property
def tau(self):
return self._tau
def set_tau(self, tau):
self._tau.data[:] = tau
def set_tau(self, tau):
self._tau.data[:] = tau
@property
def warmup_ratio(self):
return self._warmup_ratio
@property
def warmup_ratio(self):
return self._warmup_ratio
def set_warmup_ratio(self, ratio: float):
self._warmup_ratio = ratio
def set_warmup_ratio(self, ratio: float):
self._warmup_ratio = ratio
@property
def weights(self):
xlist = list(self._cells.parameters())
xlist+= list(self.lastact.parameters())
xlist+= list(self.global_pooling.parameters())
xlist+= list(self.classifier.parameters())
return xlist
@property
def weights(self):
xlist = list(self._cells.parameters())
xlist += list(self.lastact.parameters())
xlist += list(self.global_pooling.parameters())
xlist += list(self.classifier.parameters())
return xlist
@property
def alphas(self):
return [self._arch_parameters]
@property
def alphas(self):
return [self._arch_parameters]
def show_alphas(self):
with torch.no_grad():
return 'arch-parameters :\n{:}'.format(nn.functional.softmax(self._arch_parameters, dim=-1).cpu())
@property
def random(self):
cs = []
for i in range(self._max_num_Cs):
index = random.randint(0, len(self._candidate_Cs)-1)
cs.append(str(self._candidate_Cs[index]))
return ':'.join(cs)
@property
def genotype(self):
cs = []
for i in range(self._max_num_Cs):
with torch.no_grad():
index = self._arch_parameters[i].argmax().item()
cs.append(str(self._candidate_Cs[index]))
return ':'.join(cs)
def get_message(self) -> Text:
string = self.extra_repr()
for i, cell in enumerate(self._cells):
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self._cells), cell.extra_repr())
return string
def extra_repr(self):
return ('{name}(candidates={_candidate_Cs}, num={_max_num_Cs}, N={_num_stage}, L={_num_layer})'.format(name=self.__class__.__name__, **self.__dict__))
def forward(self, inputs):
feature = inputs
log_probs = []
for i, cell in enumerate(self._cells):
feature = cell(feature)
# apply different searching algorithms
idx = max(0, i-1)
if self._warmup_ratio is not None:
if random.random() < self._warmup_ratio:
mask = self._masks[-1]
else:
mask = self._masks[random.randint(0, len(self._masks)-1)]
feature = feature * mask.view(1, -1, 1, 1)
elif self._algo == 'mask_gumbel':
weights = nn.functional.gumbel_softmax(self._arch_parameters[idx:idx+1], tau=self.tau, dim=-1)
mask = torch.matmul(weights, self._masks).view(1, -1, 1, 1)
feature = feature * mask
elif self._algo == 'tas':
selected_cs, selected_probs = select2withP(self._arch_parameters[idx:idx+1], self.tau, num=2)
def show_alphas(self):
with torch.no_grad():
i1, i2 = selected_cs.cpu().view(-1).tolist()
c1, c2 = self._candidate_Cs[i1], self._candidate_Cs[i2]
out_channel = max(c1, c2)
out1 = ChannelWiseInter(feature[:, :c1], out_channel)
out2 = ChannelWiseInter(feature[:, :c2], out_channel)
out = out1 * selected_probs[0, 0] + out2 * selected_probs[0, 1]
if feature.shape[1] == out.shape[1]:
feature = out
else:
miss = torch.zeros(feature.shape[0], feature.shape[1]-out.shape[1], feature.shape[2], feature.shape[3], device=feature.device)
feature = torch.cat((out, miss), dim=1)
elif self._algo == 'mask_rl':
prob = nn.functional.softmax(self._arch_parameters[idx:idx+1], dim=-1)
dist = torch.distributions.Categorical(prob)
action = dist.sample()
log_probs.append(dist.log_prob(action))
mask = self._masks[action.item()].view(1, -1, 1, 1)
feature = feature * mask
else:
raise ValueError('invalid algorithm : {:}'.format(self._algo))
return "arch-parameters :\n{:}".format(
nn.functional.softmax(self._arch_parameters, dim=-1).cpu()
)
out = self.lastact(feature)
out = self.global_pooling(out)
out = out.view(out.size(0), -1)
logits = self.classifier(out)
@property
def random(self):
cs = []
for i in range(self._max_num_Cs):
index = random.randint(0, len(self._candidate_Cs) - 1)
cs.append(str(self._candidate_Cs[index]))
return ":".join(cs)
return out, logits, log_probs
@property
def genotype(self):
cs = []
for i in range(self._max_num_Cs):
with torch.no_grad():
index = self._arch_parameters[i].argmax().item()
cs.append(str(self._candidate_Cs[index]))
return ":".join(cs)
def get_message(self) -> Text:
string = self.extra_repr()
for i, cell in enumerate(self._cells):
string += "\n {:02d}/{:02d} :: {:}".format(
i, len(self._cells), cell.extra_repr()
)
return string
def extra_repr(self):
return "{name}(candidates={_candidate_Cs}, num={_max_num_Cs}, N={_num_stage}, L={_num_layer})".format(
name=self.__class__.__name__, **self.__dict__
)
def forward(self, inputs):
feature = inputs
log_probs = []
for i, cell in enumerate(self._cells):
feature = cell(feature)
# apply different searching algorithms
idx = max(0, i - 1)
if self._warmup_ratio is not None:
if random.random() < self._warmup_ratio:
mask = self._masks[-1]
else:
mask = self._masks[random.randint(0, len(self._masks) - 1)]
feature = feature * mask.view(1, -1, 1, 1)
elif self._algo == "mask_gumbel":
weights = nn.functional.gumbel_softmax(
self._arch_parameters[idx : idx + 1], tau=self.tau, dim=-1
)
mask = torch.matmul(weights, self._masks).view(1, -1, 1, 1)
feature = feature * mask
elif self._algo == "tas":
selected_cs, selected_probs = select2withP(
self._arch_parameters[idx : idx + 1], self.tau, num=2
)
with torch.no_grad():
i1, i2 = selected_cs.cpu().view(-1).tolist()
c1, c2 = self._candidate_Cs[i1], self._candidate_Cs[i2]
out_channel = max(c1, c2)
out1 = ChannelWiseInter(feature[:, :c1], out_channel)
out2 = ChannelWiseInter(feature[:, :c2], out_channel)
out = out1 * selected_probs[0, 0] + out2 * selected_probs[0, 1]
if feature.shape[1] == out.shape[1]:
feature = out
else:
miss = torch.zeros(
feature.shape[0],
feature.shape[1] - out.shape[1],
feature.shape[2],
feature.shape[3],
device=feature.device,
)
feature = torch.cat((out, miss), dim=1)
elif self._algo == "mask_rl":
prob = nn.functional.softmax(
self._arch_parameters[idx : idx + 1], dim=-1
)
dist = torch.distributions.Categorical(prob)
action = dist.sample()
log_probs.append(dist.log_prob(action))
mask = self._masks[action.item()].view(1, -1, 1, 1)
feature = feature * mask
else:
raise ValueError("invalid algorithm : {:}".format(self._algo))
out = self.lastact(feature)
out = self.global_pooling(out)
out = out.view(out.size(0), -1)
logits = self.classifier(out)
return out, logits, log_probs

View File

@@ -6,15 +6,15 @@ import torch.nn as nn
from SoftSelect import ChannelWiseInter
if __name__ == '__main__':
if __name__ == "__main__":
tensors = torch.rand((16, 128, 7, 7))
for oc in range(200, 210):
out_v1 = ChannelWiseInter(tensors, oc, 'v1')
out_v2 = ChannelWiseInter(tensors, oc, 'v2')
assert (out_v1 == out_v2).any().item() == 1
for oc in range(48, 160):
out_v1 = ChannelWiseInter(tensors, oc, 'v1')
out_v2 = ChannelWiseInter(tensors, oc, 'v2')
assert (out_v1 == out_v2).any().item() == 1
tensors = torch.rand((16, 128, 7, 7))
for oc in range(200, 210):
out_v1 = ChannelWiseInter(tensors, oc, "v1")
out_v2 = ChannelWiseInter(tensors, oc, "v2")
assert (out_v1 == out_v2).any().item() == 1
for oc in range(48, 160):
out_v1 = ChannelWiseInter(tensors, oc, "v1")
out_v2 = ChannelWiseInter(tensors, oc, "v2")
assert (out_v1 == out_v2).any().item() == 1