This commit is contained in:
D-X-Y
2021-05-22 18:12:08 +08:00
parent c8e95b0ddc
commit ec241e4d69
4 changed files with 554 additions and 8 deletions

View File

@@ -93,7 +93,7 @@ def epoch_evaluate(loader, meta_model, base_model, criterion, device, logger):
return loss_meter
def pretrain(base_model, meta_model, criterion, xenv, args, logger):
def pretrain_v2(base_model, meta_model, criterion, xenv, args, logger):
optimizer = torch.optim.Adam(
meta_model.parameters(),
lr=args.lr,
@@ -164,6 +164,69 @@ def pretrain(base_model, meta_model, criterion, xenv, args, logger):
start_time = time.time()
def pretrain(base_model, meta_model, criterion, xenv, args, logger):
base_model.train()
meta_model.train()
optimizer = torch.optim.Adam(
meta_model.parameters(),
lr=args.lr,
weight_decay=args.weight_decay,
amsgrad=True,
)
logger.log("Pre-train the meta-model")
logger.log("Using the optimizer: {:}".format(optimizer))
meta_model.set_best_dir(logger.path(None) / "ckps-basic-pretrain")
meta_model.set_best_name("pretrain-{:}.pth".format(args.rand_seed))
per_epoch_time, start_time = AverageMeter(), time.time()
for iepoch in range(args.epochs):
left_time = "Time Left: {:}".format(
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
)
losses = []
optimizer.zero_grad()
for ibatch in range(args.meta_batch):
rand_index = random.randint(0, meta_model.meta_length - xenv.seq_length - 1)
timestamps = meta_model.meta_timestamps[
rand_index : rand_index + xenv.seq_length
]
seq_timestamps, (seq_inputs, seq_targets) = xenv.seq_call(timestamps)
time_embeds = meta_model.super_meta_embed[
rand_index : rand_index + xenv.seq_length
]
[seq_containers], time_embeds = meta_model(
None, torch.unsqueeze(time_embeds, dim=0)
)
seq_inputs, seq_targets = seq_inputs.to(args.device), seq_targets.to(
args.device
)
for container, inputs, targets in zip(
seq_containers, seq_inputs, seq_targets
):
predictions = base_model.forward_with_container(inputs, container)
loss = criterion(predictions, targets)
losses.append(loss)
final_loss = torch.stack(losses).mean()
final_loss.backward()
optimizer.step()
# success
success, best_score = meta_model.save_best(-final_loss.item())
logger.log(
"{:} [{:04d}/{:}] loss : {:.5f}".format(
time_string(),
iepoch,
args.epochs,
final_loss.item(),
)
+ ", batch={:}".format(len(losses))
+ ", success={:}, best_score={:.4f}".format(success, -best_score)
+ " {:}".format(left_time)
)
per_epoch_time.update(time.time() - start_time)
start_time = time.time()
def main(args):
logger, env_info, model_kwargs = lfna_setup(args)
train_env = get_synthetic_env(mode="train", version=args.env_version)