Updates
This commit is contained in:
@@ -93,7 +93,7 @@ def epoch_evaluate(loader, meta_model, base_model, criterion, device, logger):
|
||||
return loss_meter
|
||||
|
||||
|
||||
def pretrain(base_model, meta_model, criterion, xenv, args, logger):
|
||||
def pretrain_v2(base_model, meta_model, criterion, xenv, args, logger):
|
||||
optimizer = torch.optim.Adam(
|
||||
meta_model.parameters(),
|
||||
lr=args.lr,
|
||||
@@ -164,6 +164,69 @@ def pretrain(base_model, meta_model, criterion, xenv, args, logger):
|
||||
start_time = time.time()
|
||||
|
||||
|
||||
def pretrain(base_model, meta_model, criterion, xenv, args, logger):
|
||||
base_model.train()
|
||||
meta_model.train()
|
||||
optimizer = torch.optim.Adam(
|
||||
meta_model.parameters(),
|
||||
lr=args.lr,
|
||||
weight_decay=args.weight_decay,
|
||||
amsgrad=True,
|
||||
)
|
||||
logger.log("Pre-train the meta-model")
|
||||
logger.log("Using the optimizer: {:}".format(optimizer))
|
||||
|
||||
meta_model.set_best_dir(logger.path(None) / "ckps-basic-pretrain")
|
||||
meta_model.set_best_name("pretrain-{:}.pth".format(args.rand_seed))
|
||||
per_epoch_time, start_time = AverageMeter(), time.time()
|
||||
for iepoch in range(args.epochs):
|
||||
left_time = "Time Left: {:}".format(
|
||||
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
|
||||
)
|
||||
losses = []
|
||||
optimizer.zero_grad()
|
||||
for ibatch in range(args.meta_batch):
|
||||
rand_index = random.randint(0, meta_model.meta_length - xenv.seq_length - 1)
|
||||
timestamps = meta_model.meta_timestamps[
|
||||
rand_index : rand_index + xenv.seq_length
|
||||
]
|
||||
|
||||
seq_timestamps, (seq_inputs, seq_targets) = xenv.seq_call(timestamps)
|
||||
time_embeds = meta_model.super_meta_embed[
|
||||
rand_index : rand_index + xenv.seq_length
|
||||
]
|
||||
[seq_containers], time_embeds = meta_model(
|
||||
None, torch.unsqueeze(time_embeds, dim=0)
|
||||
)
|
||||
seq_inputs, seq_targets = seq_inputs.to(args.device), seq_targets.to(
|
||||
args.device
|
||||
)
|
||||
for container, inputs, targets in zip(
|
||||
seq_containers, seq_inputs, seq_targets
|
||||
):
|
||||
predictions = base_model.forward_with_container(inputs, container)
|
||||
loss = criterion(predictions, targets)
|
||||
losses.append(loss)
|
||||
final_loss = torch.stack(losses).mean()
|
||||
final_loss.backward()
|
||||
optimizer.step()
|
||||
# success
|
||||
success, best_score = meta_model.save_best(-final_loss.item())
|
||||
logger.log(
|
||||
"{:} [{:04d}/{:}] loss : {:.5f}".format(
|
||||
time_string(),
|
||||
iepoch,
|
||||
args.epochs,
|
||||
final_loss.item(),
|
||||
)
|
||||
+ ", batch={:}".format(len(losses))
|
||||
+ ", success={:}, best_score={:.4f}".format(success, -best_score)
|
||||
+ " {:}".format(left_time)
|
||||
)
|
||||
per_epoch_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
|
||||
|
||||
def main(args):
|
||||
logger, env_info, model_kwargs = lfna_setup(args)
|
||||
train_env = get_synthetic_env(mode="train", version=args.env_version)
|
||||
|
||||
Reference in New Issue
Block a user