Update tests for torch/cuda
This commit is contained in:
@@ -3,6 +3,7 @@
|
||||
##################################################
|
||||
# general config related functions
|
||||
from .config_utils import load_config, dict2config, configure2str
|
||||
|
||||
# the args setting for different experiments
|
||||
from .basic_args import obtain_basic_args
|
||||
from .attention_args import obtain_attention_args
|
||||
|
@@ -3,6 +3,14 @@
|
||||
##################################################
|
||||
# every package does not rely on pytorch or tensorflow
|
||||
# I tried to list all dependency here: os, sys, time, numpy, (possibly) matplotlib
|
||||
from .logger import Logger, PrintLogger
|
||||
from .meter import AverageMeter
|
||||
from .time_utils import time_for_file, time_string, time_string_short, time_print, convert_secs2time
|
||||
##################################################
|
||||
from .logger import Logger, PrintLogger
|
||||
from .meter import AverageMeter
|
||||
from .time_utils import (
|
||||
time_for_file,
|
||||
time_string,
|
||||
time_string_short,
|
||||
time_print,
|
||||
convert_secs2time,
|
||||
)
|
||||
from .pickle_wrap import pickle_save, pickle_load
|
||||
|
@@ -4,147 +4,168 @@
|
||||
from pathlib import Path
|
||||
import importlib, warnings
|
||||
import os, sys, time, numpy as np
|
||||
if sys.version_info.major == 2: # Python 2.x
|
||||
from StringIO import StringIO as BIO
|
||||
else: # Python 3.x
|
||||
from io import BytesIO as BIO
|
||||
|
||||
if importlib.util.find_spec('tensorflow'):
|
||||
import tensorflow as tf
|
||||
if sys.version_info.major == 2: # Python 2.x
|
||||
from StringIO import StringIO as BIO
|
||||
else: # Python 3.x
|
||||
from io import BytesIO as BIO
|
||||
|
||||
if importlib.util.find_spec("tensorflow"):
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
class PrintLogger(object):
|
||||
|
||||
def __init__(self):
|
||||
"""Create a summary writer logging to log_dir."""
|
||||
self.name = 'PrintLogger'
|
||||
def __init__(self):
|
||||
"""Create a summary writer logging to log_dir."""
|
||||
self.name = "PrintLogger"
|
||||
|
||||
def log(self, string):
|
||||
print (string)
|
||||
def log(self, string):
|
||||
print(string)
|
||||
|
||||
def close(self):
|
||||
print ('-'*30 + ' close printer ' + '-'*30)
|
||||
def close(self):
|
||||
print("-" * 30 + " close printer " + "-" * 30)
|
||||
|
||||
|
||||
class Logger(object):
|
||||
|
||||
def __init__(self, log_dir, seed, create_model_dir=True, use_tf=False):
|
||||
"""Create a summary writer logging to log_dir."""
|
||||
self.seed = int(seed)
|
||||
self.log_dir = Path(log_dir)
|
||||
self.model_dir = Path(log_dir) / 'checkpoint'
|
||||
self.log_dir.mkdir (parents=True, exist_ok=True)
|
||||
if create_model_dir:
|
||||
self.model_dir.mkdir(parents=True, exist_ok=True)
|
||||
#self.meta_dir.mkdir(mode=0o775, parents=True, exist_ok=True)
|
||||
def __init__(self, log_dir, seed, create_model_dir=True, use_tf=False):
|
||||
"""Create a summary writer logging to log_dir."""
|
||||
self.seed = int(seed)
|
||||
self.log_dir = Path(log_dir)
|
||||
self.model_dir = Path(log_dir) / "checkpoint"
|
||||
self.log_dir.mkdir(parents=True, exist_ok=True)
|
||||
if create_model_dir:
|
||||
self.model_dir.mkdir(parents=True, exist_ok=True)
|
||||
# self.meta_dir.mkdir(mode=0o775, parents=True, exist_ok=True)
|
||||
|
||||
self.use_tf = bool(use_tf)
|
||||
self.tensorboard_dir = self.log_dir / ('tensorboard-{:}'.format(time.strftime( '%d-%h', time.gmtime(time.time()) )))
|
||||
#self.tensorboard_dir = self.log_dir / ('tensorboard-{:}'.format(time.strftime( '%d-%h-at-%H:%M:%S', time.gmtime(time.time()) )))
|
||||
self.logger_path = self.log_dir / 'seed-{:}-T-{:}.log'.format(self.seed, time.strftime('%d-%h-at-%H-%M-%S', time.gmtime(time.time())))
|
||||
self.logger_file = open(self.logger_path, 'w')
|
||||
self.use_tf = bool(use_tf)
|
||||
self.tensorboard_dir = self.log_dir / (
|
||||
"tensorboard-{:}".format(time.strftime("%d-%h", time.gmtime(time.time())))
|
||||
)
|
||||
# self.tensorboard_dir = self.log_dir / ('tensorboard-{:}'.format(time.strftime( '%d-%h-at-%H:%M:%S', time.gmtime(time.time()) )))
|
||||
self.logger_path = self.log_dir / "seed-{:}-T-{:}.log".format(
|
||||
self.seed, time.strftime("%d-%h-at-%H-%M-%S", time.gmtime(time.time()))
|
||||
)
|
||||
self.logger_file = open(self.logger_path, "w")
|
||||
|
||||
if self.use_tf:
|
||||
self.tensorboard_dir.mkdir(mode=0o775, parents=True, exist_ok=True)
|
||||
self.writer = tf.summary.FileWriter(str(self.tensorboard_dir))
|
||||
else:
|
||||
self.writer = None
|
||||
if self.use_tf:
|
||||
self.tensorboard_dir.mkdir(mode=0o775, parents=True, exist_ok=True)
|
||||
self.writer = tf.summary.FileWriter(str(self.tensorboard_dir))
|
||||
else:
|
||||
self.writer = None
|
||||
|
||||
def __repr__(self):
|
||||
return ('{name}(dir={log_dir}, use-tf={use_tf}, writer={writer})'.format(name=self.__class__.__name__, **self.__dict__))
|
||||
def __repr__(self):
|
||||
return "{name}(dir={log_dir}, use-tf={use_tf}, writer={writer})".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
||||
|
||||
def path(self, mode):
|
||||
valids = ('model', 'best', 'info', 'log')
|
||||
if mode == 'model': return self.model_dir / 'seed-{:}-basic.pth'.format(self.seed)
|
||||
elif mode == 'best' : return self.model_dir / 'seed-{:}-best.pth'.format(self.seed)
|
||||
elif mode == 'info' : return self.log_dir / 'seed-{:}-last-info.pth'.format(self.seed)
|
||||
elif mode == 'log' : return self.log_dir
|
||||
else: raise TypeError('Unknow mode = {:}, valid modes = {:}'.format(mode, valids))
|
||||
def path(self, mode):
|
||||
valids = ("model", "best", "info", "log")
|
||||
if mode == "model":
|
||||
return self.model_dir / "seed-{:}-basic.pth".format(self.seed)
|
||||
elif mode == "best":
|
||||
return self.model_dir / "seed-{:}-best.pth".format(self.seed)
|
||||
elif mode == "info":
|
||||
return self.log_dir / "seed-{:}-last-info.pth".format(self.seed)
|
||||
elif mode == "log":
|
||||
return self.log_dir
|
||||
else:
|
||||
raise TypeError("Unknow mode = {:}, valid modes = {:}".format(mode, valids))
|
||||
|
||||
def extract_log(self):
|
||||
return self.logger_file
|
||||
def extract_log(self):
|
||||
return self.logger_file
|
||||
|
||||
def close(self):
|
||||
self.logger_file.close()
|
||||
if self.writer is not None:
|
||||
self.writer.close()
|
||||
def close(self):
|
||||
self.logger_file.close()
|
||||
if self.writer is not None:
|
||||
self.writer.close()
|
||||
|
||||
def log(self, string, save=True, stdout=False):
|
||||
if stdout:
|
||||
sys.stdout.write(string); sys.stdout.flush()
|
||||
else:
|
||||
print (string)
|
||||
if save:
|
||||
self.logger_file.write('{:}\n'.format(string))
|
||||
self.logger_file.flush()
|
||||
def log(self, string, save=True, stdout=False):
|
||||
if stdout:
|
||||
sys.stdout.write(string)
|
||||
sys.stdout.flush()
|
||||
else:
|
||||
print(string)
|
||||
if save:
|
||||
self.logger_file.write("{:}\n".format(string))
|
||||
self.logger_file.flush()
|
||||
|
||||
def scalar_summary(self, tags, values, step):
|
||||
"""Log a scalar variable."""
|
||||
if not self.use_tf:
|
||||
warnings.warn('Do set use-tensorflow installed but call scalar_summary')
|
||||
else:
|
||||
assert isinstance(tags, list) == isinstance(values, list), 'Type : {:} vs {:}'.format(type(tags), type(values))
|
||||
if not isinstance(tags, list):
|
||||
tags, values = [tags], [values]
|
||||
for tag, value in zip(tags, values):
|
||||
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=value)])
|
||||
def scalar_summary(self, tags, values, step):
|
||||
"""Log a scalar variable."""
|
||||
if not self.use_tf:
|
||||
warnings.warn("Do set use-tensorflow installed but call scalar_summary")
|
||||
else:
|
||||
assert isinstance(tags, list) == isinstance(
|
||||
values, list
|
||||
), "Type : {:} vs {:}".format(type(tags), type(values))
|
||||
if not isinstance(tags, list):
|
||||
tags, values = [tags], [values]
|
||||
for tag, value in zip(tags, values):
|
||||
summary = tf.Summary(
|
||||
value=[tf.Summary.Value(tag=tag, simple_value=value)]
|
||||
)
|
||||
self.writer.add_summary(summary, step)
|
||||
self.writer.flush()
|
||||
|
||||
def image_summary(self, tag, images, step):
|
||||
"""Log a list of images."""
|
||||
import scipy
|
||||
|
||||
if not self.use_tf:
|
||||
warnings.warn("Do set use-tensorflow installed but call scalar_summary")
|
||||
return
|
||||
|
||||
img_summaries = []
|
||||
for i, img in enumerate(images):
|
||||
# Write the image to a string
|
||||
try:
|
||||
s = StringIO()
|
||||
except:
|
||||
s = BytesIO()
|
||||
scipy.misc.toimage(img).save(s, format="png")
|
||||
|
||||
# Create an Image object
|
||||
img_sum = tf.Summary.Image(
|
||||
encoded_image_string=s.getvalue(),
|
||||
height=img.shape[0],
|
||||
width=img.shape[1],
|
||||
)
|
||||
# Create a Summary value
|
||||
img_summaries.append(
|
||||
tf.Summary.Value(tag="{}/{}".format(tag, i), image=img_sum)
|
||||
)
|
||||
|
||||
# Create and write Summary
|
||||
summary = tf.Summary(value=img_summaries)
|
||||
self.writer.add_summary(summary, step)
|
||||
self.writer.flush()
|
||||
|
||||
def image_summary(self, tag, images, step):
|
||||
"""Log a list of images."""
|
||||
import scipy
|
||||
if not self.use_tf:
|
||||
warnings.warn('Do set use-tensorflow installed but call scalar_summary')
|
||||
return
|
||||
def histo_summary(self, tag, values, step, bins=1000):
|
||||
"""Log a histogram of the tensor of values."""
|
||||
if not self.use_tf:
|
||||
raise ValueError("Do not have tensorflow")
|
||||
import tensorflow as tf
|
||||
|
||||
img_summaries = []
|
||||
for i, img in enumerate(images):
|
||||
# Write the image to a string
|
||||
try:
|
||||
s = StringIO()
|
||||
except:
|
||||
s = BytesIO()
|
||||
scipy.misc.toimage(img).save(s, format="png")
|
||||
# Create a histogram using numpy
|
||||
counts, bin_edges = np.histogram(values, bins=bins)
|
||||
|
||||
# Create an Image object
|
||||
img_sum = tf.Summary.Image(encoded_image_string=s.getvalue(),
|
||||
height=img.shape[0],
|
||||
width=img.shape[1])
|
||||
# Create a Summary value
|
||||
img_summaries.append(tf.Summary.Value(tag='{}/{}'.format(tag, i), image=img_sum))
|
||||
# Fill the fields of the histogram proto
|
||||
hist = tf.HistogramProto()
|
||||
hist.min = float(np.min(values))
|
||||
hist.max = float(np.max(values))
|
||||
hist.num = int(np.prod(values.shape))
|
||||
hist.sum = float(np.sum(values))
|
||||
hist.sum_squares = float(np.sum(values ** 2))
|
||||
|
||||
# Create and write Summary
|
||||
summary = tf.Summary(value=img_summaries)
|
||||
self.writer.add_summary(summary, step)
|
||||
self.writer.flush()
|
||||
|
||||
def histo_summary(self, tag, values, step, bins=1000):
|
||||
"""Log a histogram of the tensor of values."""
|
||||
if not self.use_tf: raise ValueError('Do not have tensorflow')
|
||||
import tensorflow as tf
|
||||
# Drop the start of the first bin
|
||||
bin_edges = bin_edges[1:]
|
||||
|
||||
# Create a histogram using numpy
|
||||
counts, bin_edges = np.histogram(values, bins=bins)
|
||||
# Add bin edges and counts
|
||||
for edge in bin_edges:
|
||||
hist.bucket_limit.append(edge)
|
||||
for c in counts:
|
||||
hist.bucket.append(c)
|
||||
|
||||
# Fill the fields of the histogram proto
|
||||
hist = tf.HistogramProto()
|
||||
hist.min = float(np.min(values))
|
||||
hist.max = float(np.max(values))
|
||||
hist.num = int(np.prod(values.shape))
|
||||
hist.sum = float(np.sum(values))
|
||||
hist.sum_squares = float(np.sum(values**2))
|
||||
|
||||
# Drop the start of the first bin
|
||||
bin_edges = bin_edges[1:]
|
||||
|
||||
# Add bin edges and counts
|
||||
for edge in bin_edges:
|
||||
hist.bucket_limit.append(edge)
|
||||
for c in counts:
|
||||
hist.bucket.append(c)
|
||||
|
||||
# Create and write Summary
|
||||
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)])
|
||||
self.writer.add_summary(summary, step)
|
||||
self.writer.flush()
|
||||
# Create and write Summary
|
||||
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)])
|
||||
self.writer.add_summary(summary, step)
|
||||
self.writer.flush()
|
||||
|
@@ -1,98 +1,120 @@
|
||||
import numpy as np
|
||||
|
||||
|
||||
class AverageMeter(object):
|
||||
"""Computes and stores the average and current value"""
|
||||
def __init__(self):
|
||||
self.reset()
|
||||
|
||||
def reset(self):
|
||||
self.val = 0.0
|
||||
self.avg = 0.0
|
||||
self.sum = 0.0
|
||||
self.count = 0.0
|
||||
|
||||
def update(self, val, n=1):
|
||||
self.val = val
|
||||
self.sum += val * n
|
||||
self.count += n
|
||||
self.avg = self.sum / self.count
|
||||
class AverageMeter(object):
|
||||
"""Computes and stores the average and current value"""
|
||||
|
||||
def __repr__(self):
|
||||
return ('{name}(val={val}, avg={avg}, count={count})'.format(name=self.__class__.__name__, **self.__dict__))
|
||||
def __init__(self):
|
||||
self.reset()
|
||||
|
||||
def reset(self):
|
||||
self.val = 0.0
|
||||
self.avg = 0.0
|
||||
self.sum = 0.0
|
||||
self.count = 0.0
|
||||
|
||||
def update(self, val, n=1):
|
||||
self.val = val
|
||||
self.sum += val * n
|
||||
self.count += n
|
||||
self.avg = self.sum / self.count
|
||||
|
||||
def __repr__(self):
|
||||
return "{name}(val={val}, avg={avg}, count={count})".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
||||
|
||||
|
||||
class RecorderMeter(object):
|
||||
"""Computes and stores the minimum loss value and its epoch index"""
|
||||
def __init__(self, total_epoch):
|
||||
self.reset(total_epoch)
|
||||
"""Computes and stores the minimum loss value and its epoch index"""
|
||||
|
||||
def reset(self, total_epoch):
|
||||
assert total_epoch > 0, 'total_epoch should be greater than 0 vs {:}'.format(total_epoch)
|
||||
self.total_epoch = total_epoch
|
||||
self.current_epoch = 0
|
||||
self.epoch_losses = np.zeros((self.total_epoch, 2), dtype=np.float32) # [epoch, train/val]
|
||||
self.epoch_losses = self.epoch_losses - 1
|
||||
self.epoch_accuracy= np.zeros((self.total_epoch, 2), dtype=np.float32) # [epoch, train/val]
|
||||
self.epoch_accuracy= self.epoch_accuracy
|
||||
def __init__(self, total_epoch):
|
||||
self.reset(total_epoch)
|
||||
|
||||
def update(self, idx, train_loss, train_acc, val_loss, val_acc):
|
||||
assert idx >= 0 and idx < self.total_epoch, 'total_epoch : {} , but update with the {} index'.format(self.total_epoch, idx)
|
||||
self.epoch_losses [idx, 0] = train_loss
|
||||
self.epoch_losses [idx, 1] = val_loss
|
||||
self.epoch_accuracy[idx, 0] = train_acc
|
||||
self.epoch_accuracy[idx, 1] = val_acc
|
||||
self.current_epoch = idx + 1
|
||||
return self.max_accuracy(False) == self.epoch_accuracy[idx, 1]
|
||||
def reset(self, total_epoch):
|
||||
assert total_epoch > 0, "total_epoch should be greater than 0 vs {:}".format(
|
||||
total_epoch
|
||||
)
|
||||
self.total_epoch = total_epoch
|
||||
self.current_epoch = 0
|
||||
self.epoch_losses = np.zeros(
|
||||
(self.total_epoch, 2), dtype=np.float32
|
||||
) # [epoch, train/val]
|
||||
self.epoch_losses = self.epoch_losses - 1
|
||||
self.epoch_accuracy = np.zeros(
|
||||
(self.total_epoch, 2), dtype=np.float32
|
||||
) # [epoch, train/val]
|
||||
self.epoch_accuracy = self.epoch_accuracy
|
||||
|
||||
def max_accuracy(self, istrain):
|
||||
if self.current_epoch <= 0: return 0
|
||||
if istrain: return self.epoch_accuracy[:self.current_epoch, 0].max()
|
||||
else: return self.epoch_accuracy[:self.current_epoch, 1].max()
|
||||
def update(self, idx, train_loss, train_acc, val_loss, val_acc):
|
||||
assert (
|
||||
idx >= 0 and idx < self.total_epoch
|
||||
), "total_epoch : {} , but update with the {} index".format(
|
||||
self.total_epoch, idx
|
||||
)
|
||||
self.epoch_losses[idx, 0] = train_loss
|
||||
self.epoch_losses[idx, 1] = val_loss
|
||||
self.epoch_accuracy[idx, 0] = train_acc
|
||||
self.epoch_accuracy[idx, 1] = val_acc
|
||||
self.current_epoch = idx + 1
|
||||
return self.max_accuracy(False) == self.epoch_accuracy[idx, 1]
|
||||
|
||||
def plot_curve(self, save_path):
|
||||
import matplotlib
|
||||
matplotlib.use('agg')
|
||||
import matplotlib.pyplot as plt
|
||||
title = 'the accuracy/loss curve of train/val'
|
||||
dpi = 100
|
||||
width, height = 1600, 1000
|
||||
legend_fontsize = 10
|
||||
figsize = width / float(dpi), height / float(dpi)
|
||||
def max_accuracy(self, istrain):
|
||||
if self.current_epoch <= 0:
|
||||
return 0
|
||||
if istrain:
|
||||
return self.epoch_accuracy[: self.current_epoch, 0].max()
|
||||
else:
|
||||
return self.epoch_accuracy[: self.current_epoch, 1].max()
|
||||
|
||||
fig = plt.figure(figsize=figsize)
|
||||
x_axis = np.array([i for i in range(self.total_epoch)]) # epochs
|
||||
y_axis = np.zeros(self.total_epoch)
|
||||
def plot_curve(self, save_path):
|
||||
import matplotlib
|
||||
|
||||
plt.xlim(0, self.total_epoch)
|
||||
plt.ylim(0, 100)
|
||||
interval_y = 5
|
||||
interval_x = 5
|
||||
plt.xticks(np.arange(0, self.total_epoch + interval_x, interval_x))
|
||||
plt.yticks(np.arange(0, 100 + interval_y, interval_y))
|
||||
plt.grid()
|
||||
plt.title(title, fontsize=20)
|
||||
plt.xlabel('the training epoch', fontsize=16)
|
||||
plt.ylabel('accuracy', fontsize=16)
|
||||
|
||||
y_axis[:] = self.epoch_accuracy[:, 0]
|
||||
plt.plot(x_axis, y_axis, color='g', linestyle='-', label='train-accuracy', lw=2)
|
||||
plt.legend(loc=4, fontsize=legend_fontsize)
|
||||
matplotlib.use("agg")
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
y_axis[:] = self.epoch_accuracy[:, 1]
|
||||
plt.plot(x_axis, y_axis, color='y', linestyle='-', label='valid-accuracy', lw=2)
|
||||
plt.legend(loc=4, fontsize=legend_fontsize)
|
||||
title = "the accuracy/loss curve of train/val"
|
||||
dpi = 100
|
||||
width, height = 1600, 1000
|
||||
legend_fontsize = 10
|
||||
figsize = width / float(dpi), height / float(dpi)
|
||||
|
||||
|
||||
y_axis[:] = self.epoch_losses[:, 0]
|
||||
plt.plot(x_axis, y_axis*50, color='g', linestyle=':', label='train-loss-x50', lw=2)
|
||||
plt.legend(loc=4, fontsize=legend_fontsize)
|
||||
fig = plt.figure(figsize=figsize)
|
||||
x_axis = np.array([i for i in range(self.total_epoch)]) # epochs
|
||||
y_axis = np.zeros(self.total_epoch)
|
||||
|
||||
y_axis[:] = self.epoch_losses[:, 1]
|
||||
plt.plot(x_axis, y_axis*50, color='y', linestyle=':', label='valid-loss-x50', lw=2)
|
||||
plt.legend(loc=4, fontsize=legend_fontsize)
|
||||
plt.xlim(0, self.total_epoch)
|
||||
plt.ylim(0, 100)
|
||||
interval_y = 5
|
||||
interval_x = 5
|
||||
plt.xticks(np.arange(0, self.total_epoch + interval_x, interval_x))
|
||||
plt.yticks(np.arange(0, 100 + interval_y, interval_y))
|
||||
plt.grid()
|
||||
plt.title(title, fontsize=20)
|
||||
plt.xlabel("the training epoch", fontsize=16)
|
||||
plt.ylabel("accuracy", fontsize=16)
|
||||
|
||||
if save_path is not None:
|
||||
fig.savefig(save_path, dpi=dpi, bbox_inches='tight')
|
||||
print ('---- save figure {} into {}'.format(title, save_path))
|
||||
plt.close(fig)
|
||||
y_axis[:] = self.epoch_accuracy[:, 0]
|
||||
plt.plot(x_axis, y_axis, color="g", linestyle="-", label="train-accuracy", lw=2)
|
||||
plt.legend(loc=4, fontsize=legend_fontsize)
|
||||
|
||||
y_axis[:] = self.epoch_accuracy[:, 1]
|
||||
plt.plot(x_axis, y_axis, color="y", linestyle="-", label="valid-accuracy", lw=2)
|
||||
plt.legend(loc=4, fontsize=legend_fontsize)
|
||||
|
||||
y_axis[:] = self.epoch_losses[:, 0]
|
||||
plt.plot(
|
||||
x_axis, y_axis * 50, color="g", linestyle=":", label="train-loss-x50", lw=2
|
||||
)
|
||||
plt.legend(loc=4, fontsize=legend_fontsize)
|
||||
|
||||
y_axis[:] = self.epoch_losses[:, 1]
|
||||
plt.plot(
|
||||
x_axis, y_axis * 50, color="y", linestyle=":", label="valid-loss-x50", lw=2
|
||||
)
|
||||
plt.legend(loc=4, fontsize=legend_fontsize)
|
||||
|
||||
if save_path is not None:
|
||||
fig.savefig(save_path, dpi=dpi, bbox_inches="tight")
|
||||
print("---- save figure {} into {}".format(title, save_path))
|
||||
plt.close(fig)
|
||||
|
21
lib/log_utils/pickle_wrap.py
Normal file
21
lib/log_utils/pickle_wrap.py
Normal file
@@ -0,0 +1,21 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
import pickle
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
def pickle_save(obj, path):
|
||||
file_path = Path(path)
|
||||
file_dir = file_path.parent
|
||||
file_dir.mkdir(parents=True, exist_ok=True)
|
||||
with file_path.open("wb") as f:
|
||||
pickle.dump(obj, f)
|
||||
|
||||
|
||||
def pickle_load(path):
|
||||
if not Path(path).exists():
|
||||
raise ValueError("{:} does not exists".format(path))
|
||||
with Path(path).open("rb") as f:
|
||||
data = pickle.load(f)
|
||||
return data
|
@@ -4,39 +4,46 @@
|
||||
import time, sys
|
||||
import numpy as np
|
||||
|
||||
|
||||
def time_for_file():
|
||||
ISOTIMEFORMAT='%d-%h-at-%H-%M-%S'
|
||||
return '{:}'.format(time.strftime( ISOTIMEFORMAT, time.gmtime(time.time()) ))
|
||||
ISOTIMEFORMAT = "%d-%h-at-%H-%M-%S"
|
||||
return "{:}".format(time.strftime(ISOTIMEFORMAT, time.gmtime(time.time())))
|
||||
|
||||
|
||||
def time_string():
|
||||
ISOTIMEFORMAT='%Y-%m-%d %X'
|
||||
string = '[{:}]'.format(time.strftime( ISOTIMEFORMAT, time.gmtime(time.time()) ))
|
||||
return string
|
||||
ISOTIMEFORMAT = "%Y-%m-%d %X"
|
||||
string = "[{:}]".format(time.strftime(ISOTIMEFORMAT, time.gmtime(time.time())))
|
||||
return string
|
||||
|
||||
|
||||
def time_string_short():
|
||||
ISOTIMEFORMAT='%Y%m%d'
|
||||
string = '{:}'.format(time.strftime( ISOTIMEFORMAT, time.gmtime(time.time()) ))
|
||||
return string
|
||||
ISOTIMEFORMAT = "%Y%m%d"
|
||||
string = "{:}".format(time.strftime(ISOTIMEFORMAT, time.gmtime(time.time())))
|
||||
return string
|
||||
|
||||
|
||||
def time_print(string, is_print=True):
|
||||
if (is_print):
|
||||
print('{} : {}'.format(time_string(), string))
|
||||
if is_print:
|
||||
print("{} : {}".format(time_string(), string))
|
||||
|
||||
|
||||
def convert_secs2time(epoch_time, return_str=False):
|
||||
need_hour = int(epoch_time / 3600)
|
||||
need_mins = int((epoch_time - 3600 * need_hour) / 60)
|
||||
need_secs = int(epoch_time - 3600 * need_hour - 60 * need_mins)
|
||||
if return_str:
|
||||
str = "[{:02d}:{:02d}:{:02d}]".format(need_hour, need_mins, need_secs)
|
||||
return str
|
||||
else:
|
||||
return need_hour, need_mins, need_secs
|
||||
|
||||
def convert_secs2time(epoch_time, return_str=False):
|
||||
need_hour = int(epoch_time / 3600)
|
||||
need_mins = int((epoch_time - 3600*need_hour) / 60)
|
||||
need_secs = int(epoch_time - 3600*need_hour - 60*need_mins)
|
||||
if return_str:
|
||||
str = '[{:02d}:{:02d}:{:02d}]'.format(need_hour, need_mins, need_secs)
|
||||
return str
|
||||
else:
|
||||
return need_hour, need_mins, need_secs
|
||||
|
||||
def print_log(print_string, log):
|
||||
#if isinstance(log, Logger): log.log('{:}'.format(print_string))
|
||||
if hasattr(log, 'log'): log.log('{:}'.format(print_string))
|
||||
else:
|
||||
print("{:}".format(print_string))
|
||||
if log is not None:
|
||||
log.write('{:}\n'.format(print_string))
|
||||
log.flush()
|
||||
# if isinstance(log, Logger): log.log('{:}'.format(print_string))
|
||||
if hasattr(log, "log"):
|
||||
log.log("{:}".format(print_string))
|
||||
else:
|
||||
print("{:}".format(print_string))
|
||||
if log is not None:
|
||||
log.write("{:}\n".format(print_string))
|
||||
log.flush()
|
||||
|
@@ -9,15 +9,19 @@ def count_parameters_in_MB(model):
|
||||
|
||||
def count_parameters(model_or_parameters, unit="mb"):
|
||||
if isinstance(model_or_parameters, nn.Module):
|
||||
counts = np.sum(np.prod(v.size()) for v in model_or_parameters.parameters())
|
||||
counts = sum(np.prod(v.size()) for v in model_or_parameters.parameters())
|
||||
elif isinstance(models_or_parameters, nn.Parameter):
|
||||
counts = models_or_parameters.numel()
|
||||
elif isinstance(models_or_parameters, (list, tuple)):
|
||||
counts = sum(count_parameters(x, None) for x in models_or_parameters)
|
||||
else:
|
||||
counts = np.sum(np.prod(v.size()) for v in model_or_parameters)
|
||||
if unit.lower() == "mb":
|
||||
counts /= 1e6
|
||||
elif unit.lower() == "kb":
|
||||
counts /= 1e3
|
||||
elif unit.lower() == "gb":
|
||||
counts /= 1e9
|
||||
counts = sum(np.prod(v.size()) for v in model_or_parameters)
|
||||
if unit.lower() == "kb" or unit.lower() == "k":
|
||||
counts /= 2 ** 10 # changed from 1e3 to 2^10
|
||||
elif unit.lower() == "mb" or unit.lower() == "m":
|
||||
counts /= 2 ** 20 # changed from 1e6 to 2^20
|
||||
elif unit.lower() == "gb" or unit.lower() == "g":
|
||||
counts /= 2 ** 30 # changed from 1e9 to 2^30
|
||||
elif unit is not None:
|
||||
raise ValueError("Unknow unit: {:}".format(unit))
|
||||
return counts
|
||||
|
Reference in New Issue
Block a user