Reformulate Math Functions
This commit is contained in:
@@ -8,8 +8,6 @@ from typing import Optional
|
||||
import torch
|
||||
import torch.utils.data as data
|
||||
|
||||
from .math_base_funcs import QuadraticFunc, QuarticFunc
|
||||
|
||||
|
||||
class UnifiedSplit:
|
||||
"""A class to unify the split strategy."""
|
||||
@@ -39,102 +37,20 @@ class UnifiedSplit:
|
||||
return self._mode
|
||||
|
||||
|
||||
class SinGenerator(UnifiedSplit, data.Dataset):
|
||||
"""The synethtic generator for the dynamically changing environment.
|
||||
|
||||
- x in [0, 1]
|
||||
- y = amplitude-scale-of(x) * sin( period-phase-shift-of(x) )
|
||||
- where
|
||||
- the amplitude scale is a quadratic function of x
|
||||
- the period-phase-shift is another quadratic function of x
|
||||
|
||||
"""
|
||||
class TimeStamp(UnifiedSplit, data.Dataset):
|
||||
"""The timestamp dataset."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
min_timestamp: float = 0.0,
|
||||
max_timestamp: float = 1.0,
|
||||
num: int = 100,
|
||||
num_sin_phase: int = 7,
|
||||
min_amplitude: float = 1,
|
||||
max_amplitude: float = 4,
|
||||
phase_shift: float = 0,
|
||||
mode: Optional[str] = None,
|
||||
):
|
||||
self._amplitude_scale = QuadraticFunc(
|
||||
[(0, min_amplitude), (0.5, max_amplitude), (1, min_amplitude)]
|
||||
)
|
||||
|
||||
self._num_sin_phase = num_sin_phase
|
||||
self._interval = 1.0 / (float(num) - 1)
|
||||
self._min_timestamp = min_timestamp
|
||||
self._max_timestamp = max_timestamp
|
||||
self._interval = (max_timestamp - min_timestamp) / (float(num) - 1)
|
||||
self._total_num = num
|
||||
|
||||
fitting_data = []
|
||||
temp_max_scalar = 2 ** (num_sin_phase - 1)
|
||||
for i in range(num_sin_phase):
|
||||
value = (2 ** i) / temp_max_scalar
|
||||
next_value = (2 ** (i + 1)) / temp_max_scalar
|
||||
for _phase in (0, 0.25, 0.5, 0.75):
|
||||
inter_value = value + (next_value - value) * _phase
|
||||
fitting_data.append((inter_value, math.pi * (2 * i + _phase)))
|
||||
self._period_phase_shift = QuarticFunc(fitting_data)
|
||||
UnifiedSplit.__init__(self, self._total_num, mode)
|
||||
self._transform = None
|
||||
|
||||
def __iter__(self):
|
||||
self._iter_num = 0
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
if self._iter_num >= len(self):
|
||||
raise StopIteration
|
||||
self._iter_num += 1
|
||||
return self.__getitem__(self._iter_num - 1)
|
||||
|
||||
def set_transform(self, transform):
|
||||
self._transform = transform
|
||||
|
||||
def transform(self, x):
|
||||
if self._transform is None:
|
||||
return x
|
||||
else:
|
||||
return self._transform(x)
|
||||
|
||||
def __getitem__(self, index):
|
||||
assert 0 <= index < len(self), "{:} is not in [0, {:})".format(index, len(self))
|
||||
index = self._indexes[index]
|
||||
position = self._interval * index
|
||||
value = self._amplitude_scale(position) * math.sin(
|
||||
self._period_phase_shift(position)
|
||||
)
|
||||
return index, position, self.transform(value)
|
||||
|
||||
def __len__(self):
|
||||
return len(self._indexes)
|
||||
|
||||
def __repr__(self):
|
||||
return (
|
||||
"{name}({cur_num:}/{total} elements,\n"
|
||||
"amplitude={amplitude},\n"
|
||||
"period_phase_shift={period_phase_shift})".format(
|
||||
name=self.__class__.__name__,
|
||||
cur_num=len(self),
|
||||
total=self._total_num,
|
||||
amplitude=self._amplitude_scale,
|
||||
period_phase_shift=self._period_phase_shift,
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
class ConstantGenerator(UnifiedSplit, data.Dataset):
|
||||
"""The constant generator."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
num: int = 100,
|
||||
constant: float = 0.1,
|
||||
mode: Optional[str] = None,
|
||||
):
|
||||
self._total_num = num
|
||||
self._constant = constant
|
||||
UnifiedSplit.__init__(self, self._total_num, mode)
|
||||
|
||||
def __iter__(self):
|
||||
@@ -150,7 +66,8 @@ class ConstantGenerator(UnifiedSplit, data.Dataset):
|
||||
def __getitem__(self, index):
|
||||
assert 0 <= index < len(self), "{:} is not in [0, {:})".format(index, len(self))
|
||||
index = self._indexes[index]
|
||||
return index, index, self._constant
|
||||
timestamp = self._min_timestamp + self._interval * index
|
||||
return index, timestamp
|
||||
|
||||
def __len__(self):
|
||||
return len(self._indexes)
|
||||
|
Reference in New Issue
Block a user