Reformulate Math Functions

This commit is contained in:
D-X-Y
2021-04-26 05:16:38 -07:00
parent 1980779053
commit e1818694a4
14 changed files with 308 additions and 254 deletions

View File

@@ -4,45 +4,42 @@
import math
import abc
import numpy as np
from typing import List, Optional
from typing import List, Optional, Dict
import torch
import torch.utils.data as data
from .synthetic_utils import UnifiedSplit
from .synthetic_utils import TimeStamp
class SyntheticDEnv(UnifiedSplit, data.Dataset):
class SyntheticDEnv(data.Dataset):
"""The synethtic dynamic environment."""
def __init__(
self,
mean_generators: List[data.Dataset],
cov_generators: List[List[data.Dataset]],
mean_functors: List[data.Dataset],
cov_functors: List[List[data.Dataset]],
num_per_task: int = 5000,
time_stamp_config: Optional[Dict] = None,
mode: Optional[str] = None,
):
self._ndim = len(mean_generators)
self._ndim = len(mean_functors)
assert self._ndim == len(
cov_generators
), "length does not match {:} vs. {:}".format(self._ndim, len(cov_generators))
for cov_generator in cov_generators:
cov_functors
), "length does not match {:} vs. {:}".format(self._ndim, len(cov_functors))
for cov_functor in cov_functors:
assert self._ndim == len(
cov_generator
), "length does not match {:} vs. {:}".format(
self._ndim, len(cov_generator)
)
cov_functor
), "length does not match {:} vs. {:}".format(self._ndim, len(cov_functor))
self._num_per_task = num_per_task
self._total_num = len(mean_generators[0])
for mean_generator in mean_generators:
assert self._total_num == len(mean_generator)
for cov_generator in cov_generators:
for cov_g in cov_generator:
assert self._total_num == len(cov_g)
if time_stamp_config is None:
time_stamp_config = dict(mode=mode)
else:
time_stamp_config["mode"] = mode
self._mean_generators = mean_generators
self._cov_generators = cov_generators
self._timestamp_generator = TimeStamp(**time_stamp_config)
UnifiedSplit.__init__(self, self._total_num, mode)
self._mean_functors = mean_functors
self._cov_functors = cov_functors
def __iter__(self):
self._iter_num = 0
@@ -56,11 +53,11 @@ class SyntheticDEnv(UnifiedSplit, data.Dataset):
def __getitem__(self, index):
assert 0 <= index < len(self), "{:} is not in [0, {:})".format(index, len(self))
index = self._indexes[index]
mean_list = [generator[index][-1] for generator in self._mean_generators]
index, timestamp = self._timestamp_generator[index]
mean_list = [functor(timestamp) for functor in self._mean_functors]
cov_matrix = [
[cov_gen[index][-1] for cov_gen in cov_generator]
for cov_generator in self._cov_generators
[cov_gen(timestamp) for cov_gen in cov_functor]
for cov_functor in self._cov_functors
]
dataset = np.random.multivariate_normal(
@@ -69,13 +66,13 @@ class SyntheticDEnv(UnifiedSplit, data.Dataset):
return index, torch.Tensor(dataset)
def __len__(self):
return len(self._indexes)
return len(self._timestamp_generator)
def __repr__(self):
return "{name}({cur_num:}/{total} elements, ndim={ndim}, num_per_task={num_per_task})".format(
name=self.__class__.__name__,
cur_num=len(self),
total=self._total_num,
total=len(self._timestamp_generator),
ndim=self._ndim,
num_per_task=self._num_per_task,
)