Reformulate Math Functions
This commit is contained in:
@@ -13,13 +13,17 @@ import torch.utils.data as data
|
||||
class FitFunc(abc.ABC):
|
||||
"""The fit function that outputs f(x) = a * x^2 + b * x + c."""
|
||||
|
||||
def __init__(self, freedom: int, list_of_points=None):
|
||||
def __init__(self, freedom: int, list_of_points=None, _params=None):
|
||||
self._params = dict()
|
||||
for i in range(freedom):
|
||||
self._params[i] = None
|
||||
self._freedom = freedom
|
||||
if list_of_points is not None and _params is not None:
|
||||
raise ValueError("list_of_points and _params can not be set simultaneously")
|
||||
if list_of_points is not None:
|
||||
self.fit(list_of_points)
|
||||
self.fit(list_of_points=list_of_points)
|
||||
if _params is not None:
|
||||
self.set(_params)
|
||||
|
||||
def set(self, _params):
|
||||
self._params = copy.deepcopy(_params)
|
||||
@@ -45,13 +49,13 @@ class FitFunc(abc.ABC):
|
||||
def _getitem(self, x):
|
||||
raise NotImplementedError
|
||||
|
||||
def fit(
|
||||
self,
|
||||
list_of_points,
|
||||
max_iter=900,
|
||||
lr_max=1.0,
|
||||
verbose=False,
|
||||
):
|
||||
def fit(self, **kwargs):
|
||||
list_of_points = kwargs["list_of_points"]
|
||||
max_iter, lr_max, verbose = (
|
||||
kwargs.get("max_iter", 900),
|
||||
kwargs.get("lr_max", 1.0),
|
||||
kwargs.get("verbose", False),
|
||||
)
|
||||
with torch.no_grad():
|
||||
data = torch.Tensor(list_of_points).type(torch.float32)
|
||||
assert data.ndim == 2 and data.size(1) == 2, "Invalid shape : {:}".format(
|
||||
@@ -113,7 +117,7 @@ class QuadraticFunc(FitFunc):
|
||||
return weights[0] * x * x + weights[1] * x + weights[2]
|
||||
|
||||
def __repr__(self):
|
||||
return "{name}(y = {a} * x^2 + {b} * x + {c})".format(
|
||||
return "{name}({a} * x^2 + {b} * x + {c})".format(
|
||||
name=self.__class__.__name__,
|
||||
a=self._params[0],
|
||||
b=self._params[1],
|
||||
@@ -140,7 +144,7 @@ class CubicFunc(FitFunc):
|
||||
return weights[0] * x ** 3 + weights[1] * x ** 2 + weights[2] * x + weights[3]
|
||||
|
||||
def __repr__(self):
|
||||
return "{name}(y = {a} * x^3 + {b} * x^2 + {c} * x + {d})".format(
|
||||
return "{name}({a} * x^3 + {b} * x^2 + {c} * x + {d})".format(
|
||||
name=self.__class__.__name__,
|
||||
a=self._params[0],
|
||||
b=self._params[1],
|
||||
@@ -175,7 +179,7 @@ class QuarticFunc(FitFunc):
|
||||
)
|
||||
|
||||
def __repr__(self):
|
||||
return "{name}(y = {a} * x^4 + {b} * x^3 + {c} * x^2 + {d} * x + {e})".format(
|
||||
return "{name}({a} * x^4 + {b} * x^3 + {c} * x^2 + {d} * x + {e})".format(
|
||||
name=self.__class__.__name__,
|
||||
a=self._params[0],
|
||||
b=self._params[1],
|
||||
@@ -183,34 +187,3 @@ class QuarticFunc(FitFunc):
|
||||
d=self._params[3],
|
||||
e=self._params[3],
|
||||
)
|
||||
|
||||
|
||||
class DynamicQuadraticFunc(FitFunc):
|
||||
"""The dynamic quadratic function that outputs f(x) = a * x^2 + b * x + c."""
|
||||
|
||||
def __init__(self, list_of_points=None):
|
||||
super(DynamicQuadraticFunc, self).__init__(3, list_of_points)
|
||||
self._timestamp = None
|
||||
|
||||
def __call__(self, x):
|
||||
self.check_valid()
|
||||
a = self._params[0][self._timestamp]
|
||||
b = self._params[1][self._timestamp]
|
||||
c = self._params[2][self._timestamp]
|
||||
convert_fn = lambda x: x[-1] if isinstance(x, (tuple, list)) else x
|
||||
a, b, c = convert_fn(a), convert_fn(b), convert_fn(c)
|
||||
return a * x * x + b * x + c
|
||||
|
||||
def _getitem(self, x, weights):
|
||||
raise NotImplementedError
|
||||
|
||||
def set_timestamp(self, timestamp):
|
||||
self._timestamp = timestamp
|
||||
|
||||
def __repr__(self):
|
||||
return "{name}(y = {a} * x^2 + {b} * x + {c})".format(
|
||||
name=self.__class__.__name__,
|
||||
a=self._params[0],
|
||||
b=self._params[1],
|
||||
c=self._params[2],
|
||||
)
|
||||
|
Reference in New Issue
Block a user