Add SuperAttention
This commit is contained in:
155
lib/xlayers/super_attention.py
Normal file
155
lib/xlayers/super_attention.py
Normal file
@@ -0,0 +1,155 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
|
||||
#####################################################
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import math
|
||||
from functools import partial
|
||||
from typing import Optional, Text
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
import spaces
|
||||
from .super_module import SuperModule
|
||||
from .super_module import IntSpaceType
|
||||
from .super_module import BoolSpaceType
|
||||
from .super_linear import SuperLinear
|
||||
|
||||
|
||||
class SuperAttention(SuperModule):
|
||||
"""The super model for attention layer."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_dim: IntSpaceType,
|
||||
proj_dim: IntSpaceType,
|
||||
num_heads: IntSpaceType,
|
||||
qkv_bias: BoolSpaceType = False,
|
||||
attn_drop: float = 0.0,
|
||||
proj_drop: float = 0.0,
|
||||
):
|
||||
super(SuperAttention, self).__init__()
|
||||
self._input_dim = input_dim
|
||||
self._proj_dim = proj_dim
|
||||
self._num_heads = num_heads
|
||||
self._qkv_bias = qkv_bias
|
||||
# head_dim = dim // num_heads
|
||||
# self.scale = qk_scale or math.sqrt(head_dim)
|
||||
|
||||
# self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
||||
self.q_fc = SuperLinear(input_dim, input_dim, bias=qkv_bias)
|
||||
self.k_fc = SuperLinear(input_dim, input_dim, bias=qkv_bias)
|
||||
self.v_fc = SuperLinear(input_dim, input_dim, bias=qkv_bias)
|
||||
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
self.proj = SuperLinear(input_dim, proj_dim)
|
||||
self.proj_drop = nn.Dropout(proj_drop)
|
||||
|
||||
@property
|
||||
def num_heads(self):
|
||||
return spaces.get_max(self._num_heads)
|
||||
|
||||
@property
|
||||
def input_dim(self):
|
||||
return spaces.get_max(self._input_dim)
|
||||
|
||||
@property
|
||||
def proj_dim(self):
|
||||
return spaces.get_max(self._proj_dim)
|
||||
|
||||
@property
|
||||
def abstract_search_space(self):
|
||||
root_node = spaces.VirtualNode(id(self))
|
||||
space_q = self.q_fc.abstract_search_space
|
||||
space_k = self.k_fc.abstract_search_space
|
||||
space_v = self.v_fc.abstract_search_space
|
||||
space_proj = self.proj.abstract_search_space
|
||||
if not spaces.is_determined(self._num_heads):
|
||||
root_node.append("_num_heads", self._num_heads.abstract(reuse_last=True))
|
||||
if not spaces.is_determined(space_q):
|
||||
root_node.append("q_fc", space_q)
|
||||
if not spaces.is_determined(space_k):
|
||||
root_node.append("k_fc", space_k)
|
||||
if not spaces.is_determined(space_v):
|
||||
root_node.append("v_fc", space_v)
|
||||
if not spaces.is_determined(space_proj):
|
||||
root_node.append("proj", space_proj)
|
||||
return root_node
|
||||
|
||||
def apply_candidate(self, abstract_child: spaces.VirtualNode):
|
||||
super(SuperAttention, self).apply_candidate(abstract_child)
|
||||
if "q_fc" in abstract_child:
|
||||
self.q_fc.apply_candidate(abstract_child["q_fc"])
|
||||
if "k_fc" in abstract_child:
|
||||
self.k_fc.apply_candidate(abstract_child["k_fc"])
|
||||
if "v_fc" in abstract_child:
|
||||
self.v_fc.apply_candidate(abstract_child["v_fc"])
|
||||
if "proj" in abstract_child:
|
||||
self.proj.apply_candidate(abstract_child["proj"])
|
||||
|
||||
def forward_qkv(self, input: torch.Tensor, num_head: int) -> torch.Tensor:
|
||||
B, N, C = input.shape
|
||||
q = self.q_fc(input)
|
||||
k = self.k_fc(input)
|
||||
v = self.v_fc(input)
|
||||
if num_head > C:
|
||||
raise ValueError("Invalid num_head [{:}] vs C [{:}]".format(num_head, C))
|
||||
head_dim = C // num_head
|
||||
# process the first [num_head * head_dim] part
|
||||
q_v1 = (
|
||||
q[:, :, : num_head * head_dim]
|
||||
.reshape(B, N, num_head, head_dim)
|
||||
.permute(0, 2, 1, 3)
|
||||
)
|
||||
k_v1 = (
|
||||
k[:, :, : num_head * head_dim]
|
||||
.reshape(B, N, num_head, head_dim)
|
||||
.permute(0, 2, 1, 3)
|
||||
)
|
||||
v_v1 = (
|
||||
v[:, :, : num_head * head_dim]
|
||||
.reshape(B, N, num_head, head_dim)
|
||||
.permute(0, 2, 1, 3)
|
||||
)
|
||||
attn_v1 = (q_v1 @ k_v1.transpose(-2, -1)) * math.sqrt(head_dim)
|
||||
attn_v1 = attn_v1.softmax(dim=-1)
|
||||
attn_v1 = self.attn_drop(attn_v1)
|
||||
feats_v1 = (attn_v1 @ v_v1).permute(0, 2, 1, 3).reshape(B, N, -1)
|
||||
if C == head_dim * num_head:
|
||||
feats = feats_v1
|
||||
else: # The channels can not be divided by num_head, the remainder forms an additional head
|
||||
q_v2 = q[:, :, num_head * head_dim :]
|
||||
k_v2 = k[:, :, num_head * head_dim :]
|
||||
v_v2 = v[:, :, num_head * head_dim :]
|
||||
attn_v2 = (q_v2 @ k_v2.transpose(-2, -1)) * math.sqrt(q_v2.shape[-1])
|
||||
attn_v2 = attn_v2.softmax(dim=-1)
|
||||
attn_v2 = self.attn_drop(attn_v2)
|
||||
feats_v2 = attn_v2 @ v_v2
|
||||
feats = torch.cat([feats_v1, feats_v2], dim=-1)
|
||||
return feats
|
||||
|
||||
def forward_candidate(self, input: torch.Tensor) -> torch.Tensor:
|
||||
# check the num_heads:
|
||||
if not spaces.is_determined(self._num_heads):
|
||||
num_heads = self.abstract_child["_num_heads"].value
|
||||
else:
|
||||
num_heads = spaces.get_determined_value(self._num_heads)
|
||||
feats = self.forward_qkv(input, num_heads)
|
||||
outs = self.proj(feats)
|
||||
outs = self.proj_drop(outs)
|
||||
return outs
|
||||
|
||||
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
|
||||
feats = self.forward_qkv(input, self.num_heads)
|
||||
outs = self.proj(feats)
|
||||
outs = self.proj_drop(outs)
|
||||
return outs
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return "input_dim={:}, proj_dim={:}, num_heads={:}".format(
|
||||
self._input_dim, self._proj_dim, self._num_heads
|
||||
)
|
Reference in New Issue
Block a user