|
|
|
@@ -8,6 +8,10 @@
|
|
|
|
|
# python ./exps/algos-v2/search-size.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo fbv2 --rand_seed 777
|
|
|
|
|
# python ./exps/algos-v2/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo fbv2 --rand_seed 777
|
|
|
|
|
# python ./exps/algos-v2/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo fbv2 --rand_seed 777
|
|
|
|
|
####
|
|
|
|
|
# python ./exps/algos-v2/search-size.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo tunas --arch_weight_decay 0 --rand_seed 777 --use_api 0
|
|
|
|
|
# python ./exps/algos-v2/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo tunas --arch_weight_decay 0 --rand_seed 777
|
|
|
|
|
# python ./exps/algos-v2/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo tunas --arch_weight_decay 0 --rand_seed 777
|
|
|
|
|
######################################################################################
|
|
|
|
|
import os, sys, time, random, argparse
|
|
|
|
|
import numpy as np
|
|
|
|
@@ -26,7 +30,28 @@ from models import get_cell_based_tiny_net, get_search_spaces
|
|
|
|
|
from nas_201_api import NASBench301API as API
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger):
|
|
|
|
|
# Ad-hoc for TuNAS
|
|
|
|
|
class ExponentialMovingAverage(object):
|
|
|
|
|
"""Class that maintains an exponential moving average."""
|
|
|
|
|
|
|
|
|
|
def __init__(self, momentum):
|
|
|
|
|
self._numerator = 0
|
|
|
|
|
self._denominator = 0
|
|
|
|
|
self._momentum = momentum
|
|
|
|
|
|
|
|
|
|
def update(self, value):
|
|
|
|
|
self._numerator = self._momentum * self._numerator + (1 - self._momentum) * value
|
|
|
|
|
self._denominator = self._momentum * self._denominator + (1 - self._momentum)
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def value(self):
|
|
|
|
|
"""Return the current value of the moving average"""
|
|
|
|
|
return self._numerator / self._denominator
|
|
|
|
|
|
|
|
|
|
RL_BASELINE_EMA = ExponentialMovingAverage(0.95)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer, algo, epoch_str, print_freq, logger):
|
|
|
|
|
data_time, batch_time = AverageMeter(), AverageMeter()
|
|
|
|
|
base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter()
|
|
|
|
|
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
|
|
|
|
@@ -43,7 +68,7 @@ def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer
|
|
|
|
|
|
|
|
|
|
# Update the weights
|
|
|
|
|
network.zero_grad()
|
|
|
|
|
_, logits = network(base_inputs)
|
|
|
|
|
_, logits, _ = network(base_inputs)
|
|
|
|
|
base_loss = criterion(logits, base_targets)
|
|
|
|
|
base_loss.backward()
|
|
|
|
|
w_optimizer.step()
|
|
|
|
@@ -55,12 +80,21 @@ def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer
|
|
|
|
|
|
|
|
|
|
# update the architecture-weight
|
|
|
|
|
network.zero_grad()
|
|
|
|
|
_, logits = network(arch_inputs)
|
|
|
|
|
_, logits, log_probs = network(arch_inputs)
|
|
|
|
|
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
|
|
|
|
|
if algo == 'tunas':
|
|
|
|
|
with torch.no_grad():
|
|
|
|
|
RL_BASELINE_EMA.update(arch_prec1.item())
|
|
|
|
|
rl_advantage = arch_prec1 - RL_BASELINE_EMA.value
|
|
|
|
|
rl_log_prob = sum(log_probs)
|
|
|
|
|
arch_loss = - rl_advantage * rl_log_prob
|
|
|
|
|
elif algo == 'tas' or algo == 'fbv2':
|
|
|
|
|
arch_loss = criterion(logits, arch_targets)
|
|
|
|
|
else:
|
|
|
|
|
raise ValueError('invalid algorightm name: {:}'.format(algo))
|
|
|
|
|
arch_loss.backward()
|
|
|
|
|
a_optimizer.step()
|
|
|
|
|
# record
|
|
|
|
|
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
|
|
|
|
|
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
|
|
|
|
|
arch_top1.update (arch_prec1.item(), arch_inputs.size(0))
|
|
|
|
|
arch_top5.update (arch_prec5.item(), arch_inputs.size(0))
|
|
|
|
@@ -78,76 +112,6 @@ def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer
|
|
|
|
|
return base_losses.avg, base_top1.avg, base_top5.avg, arch_losses.avg, arch_top1.avg, arch_top5.avg
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def train_controller(xloader, network, criterion, optimizer, prev_baseline, epoch_str, print_freq, logger):
|
|
|
|
|
# config. (containing some necessary arg)
|
|
|
|
|
# baseline: The baseline score (i.e. average val_acc) from the previous epoch
|
|
|
|
|
data_time, batch_time = AverageMeter(), AverageMeter()
|
|
|
|
|
GradnormMeter, LossMeter, ValAccMeter, EntropyMeter, BaselineMeter, RewardMeter, xend = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), time.time()
|
|
|
|
|
|
|
|
|
|
controller_num_aggregate = 20
|
|
|
|
|
controller_train_steps = 50
|
|
|
|
|
controller_bl_dec = 0.99
|
|
|
|
|
controller_entropy_weight = 0.0001
|
|
|
|
|
|
|
|
|
|
network.eval()
|
|
|
|
|
network.controller.train()
|
|
|
|
|
network.controller.zero_grad()
|
|
|
|
|
loader_iter = iter(xloader)
|
|
|
|
|
for step in range(controller_train_steps * controller_num_aggregate):
|
|
|
|
|
try:
|
|
|
|
|
inputs, targets = next(loader_iter)
|
|
|
|
|
except:
|
|
|
|
|
loader_iter = iter(xloader)
|
|
|
|
|
inputs, targets = next(loader_iter)
|
|
|
|
|
inputs = inputs.cuda(non_blocking=True)
|
|
|
|
|
targets = targets.cuda(non_blocking=True)
|
|
|
|
|
# measure data loading time
|
|
|
|
|
data_time.update(time.time() - xend)
|
|
|
|
|
|
|
|
|
|
log_prob, entropy, sampled_arch = network.controller()
|
|
|
|
|
with torch.no_grad():
|
|
|
|
|
network.set_cal_mode('dynamic', sampled_arch)
|
|
|
|
|
_, logits = network(inputs)
|
|
|
|
|
val_top1, val_top5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
|
|
|
|
|
val_top1 = val_top1.view(-1) / 100
|
|
|
|
|
reward = val_top1 + controller_entropy_weight * entropy
|
|
|
|
|
if prev_baseline is None:
|
|
|
|
|
baseline = val_top1
|
|
|
|
|
else:
|
|
|
|
|
baseline = prev_baseline - (1 - controller_bl_dec) * (prev_baseline - reward)
|
|
|
|
|
|
|
|
|
|
loss = -1 * log_prob * (reward - baseline)
|
|
|
|
|
|
|
|
|
|
# account
|
|
|
|
|
RewardMeter.update(reward.item())
|
|
|
|
|
BaselineMeter.update(baseline.item())
|
|
|
|
|
ValAccMeter.update(val_top1.item()*100)
|
|
|
|
|
LossMeter.update(loss.item())
|
|
|
|
|
EntropyMeter.update(entropy.item())
|
|
|
|
|
|
|
|
|
|
# Average gradient over controller_num_aggregate samples
|
|
|
|
|
loss = loss / controller_num_aggregate
|
|
|
|
|
loss.backward(retain_graph=True)
|
|
|
|
|
|
|
|
|
|
# measure elapsed time
|
|
|
|
|
batch_time.update(time.time() - xend)
|
|
|
|
|
xend = time.time()
|
|
|
|
|
if (step+1) % controller_num_aggregate == 0:
|
|
|
|
|
grad_norm = torch.nn.utils.clip_grad_norm_(network.controller.parameters(), 5.0)
|
|
|
|
|
GradnormMeter.update(grad_norm)
|
|
|
|
|
optimizer.step()
|
|
|
|
|
network.controller.zero_grad()
|
|
|
|
|
|
|
|
|
|
if step % print_freq == 0:
|
|
|
|
|
Sstr = '*Train-Controller* ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, controller_train_steps * controller_num_aggregate)
|
|
|
|
|
Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time)
|
|
|
|
|
Wstr = '[Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Reward {reward.val:.2f} ({reward.avg:.2f})] Baseline {basel.val:.2f} ({basel.avg:.2f})'.format(loss=LossMeter, top1=ValAccMeter, reward=RewardMeter, basel=BaselineMeter)
|
|
|
|
|
Estr = 'Entropy={:.4f} ({:.4f})'.format(EntropyMeter.val, EntropyMeter.avg)
|
|
|
|
|
logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Estr)
|
|
|
|
|
|
|
|
|
|
return LossMeter.avg, ValAccMeter.avg, BaselineMeter.avg, RewardMeter.avg
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def valid_func(xloader, network, criterion, logger):
|
|
|
|
|
data_time, batch_time = AverageMeter(), AverageMeter()
|
|
|
|
|
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
|
|
|
|
@@ -159,7 +123,7 @@ def valid_func(xloader, network, criterion, logger):
|
|
|
|
|
# measure data loading time
|
|
|
|
|
data_time.update(time.time() - end)
|
|
|
|
|
# prediction
|
|
|
|
|
_, logits = network(arch_inputs.cuda(non_blocking=True))
|
|
|
|
|
_, logits, _ = network(arch_inputs.cuda(non_blocking=True))
|
|
|
|
|
arch_loss = criterion(logits, arch_targets)
|
|
|
|
|
# record
|
|
|
|
|
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
|
|
|
|
@@ -211,9 +175,9 @@ def main(xargs):
|
|
|
|
|
params = count_parameters_in_MB(search_model)
|
|
|
|
|
logger.log('The parameters of the search model = {:.2f} MB'.format(params))
|
|
|
|
|
logger.log('search-space : {:}'.format(search_space))
|
|
|
|
|
try:
|
|
|
|
|
if bool(xargs.use_api):
|
|
|
|
|
api = API(verbose=False)
|
|
|
|
|
except:
|
|
|
|
|
else:
|
|
|
|
|
api = None
|
|
|
|
|
logger.log('{:} create API = {:} done'.format(time_string(), api))
|
|
|
|
|
|
|
|
|
@@ -250,7 +214,7 @@ def main(xargs):
|
|
|
|
|
network.set_tau( xargs.tau_max - (xargs.tau_max-xargs.tau_min) * epoch / (total_epoch-1) )
|
|
|
|
|
logger.log('[RESET tau as : {:}]'.format(network.tau))
|
|
|
|
|
search_w_loss, search_w_top1, search_w_top5, search_a_loss, search_a_top1, search_a_top5 \
|
|
|
|
|
= search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger)
|
|
|
|
|
= search_func(search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, xargs.algo, epoch_str, xargs.print_freq, logger)
|
|
|
|
|
search_time.update(time.time() - start_time)
|
|
|
|
|
logger.log('[{:}] search [base] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s'.format(epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum))
|
|
|
|
|
logger.log('[{:}] search [arch] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, search_a_loss, search_a_top1, search_a_top5))
|
|
|
|
@@ -305,8 +269,9 @@ if __name__ == '__main__':
|
|
|
|
|
parser.add_argument('--data_path' , type=str, help='Path to dataset')
|
|
|
|
|
parser.add_argument('--dataset' , type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
|
|
|
|
|
parser.add_argument('--search_space', type=str, default='sss', choices=['sss'], help='The search space name.')
|
|
|
|
|
parser.add_argument('--algo' , type=str, choices=['tas', 'fbv2', 'enas'], help='The search space name.')
|
|
|
|
|
parser.add_argument('--algo' , type=str, choices=['tas', 'fbv2', 'tunas'], help='The search space name.')
|
|
|
|
|
parser.add_argument('--genotype' , type=str, default='|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|nor_conv_3x3~1|nor_conv_3x3~2|', help='The genotype.')
|
|
|
|
|
parser.add_argument('--use_api' , type=int, default=1, choices=[0,1], help='Whether use API or not (which will cost much memory).')
|
|
|
|
|
# FOR GDAS
|
|
|
|
|
parser.add_argument('--tau_min', type=float, default=0.1, help='The minimum tau for Gumbel Softmax.')
|
|
|
|
|
parser.add_argument('--tau_max', type=float, default=10, help='The maximum tau for Gumbel Softmax.')
|
|
|
|
|