Add more algorithms
This commit is contained in:
7
lib/log_utils/__init__.py
Normal file
7
lib/log_utils/__init__.py
Normal file
@@ -0,0 +1,7 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
from .logger import Logger
|
||||
from .print_logger import PrintLogger
|
||||
from .meter import AverageMeter
|
||||
from .time_utils import time_for_file, time_string, time_string_short, time_print, convert_size2str, convert_secs2time
|
140
lib/log_utils/logger.py
Normal file
140
lib/log_utils/logger.py
Normal file
@@ -0,0 +1,140 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
#
|
||||
from pathlib import Path
|
||||
import importlib, warnings
|
||||
import os, sys, time, numpy as np
|
||||
if sys.version_info.major == 2: # Python 2.x
|
||||
from StringIO import StringIO as BIO
|
||||
else: # Python 3.x
|
||||
from io import BytesIO as BIO
|
||||
|
||||
if importlib.util.find_spec('tensorflow'):
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
class Logger(object):
|
||||
|
||||
def __init__(self, log_dir, seed, create_model_dir=True, use_tf=False):
|
||||
"""Create a summary writer logging to log_dir."""
|
||||
self.seed = int(seed)
|
||||
self.log_dir = Path(log_dir)
|
||||
self.model_dir = Path(log_dir) / 'checkpoint'
|
||||
self.log_dir.mkdir (parents=True, exist_ok=True)
|
||||
if create_model_dir:
|
||||
self.model_dir.mkdir(parents=True, exist_ok=True)
|
||||
#self.meta_dir.mkdir(mode=0o775, parents=True, exist_ok=True)
|
||||
|
||||
self.use_tf = bool(use_tf)
|
||||
self.tensorboard_dir = self.log_dir / ('tensorboard-{:}'.format(time.strftime( '%d-%h', time.gmtime(time.time()) )))
|
||||
#self.tensorboard_dir = self.log_dir / ('tensorboard-{:}'.format(time.strftime( '%d-%h-at-%H:%M:%S', time.gmtime(time.time()) )))
|
||||
self.logger_path = self.log_dir / 'seed-{:}-T-{:}.log'.format(self.seed, time.strftime('%d-%h-at-%H-%M-%S', time.gmtime(time.time())))
|
||||
self.logger_file = open(self.logger_path, 'w')
|
||||
|
||||
if self.use_tf:
|
||||
self.tensorboard_dir.mkdir(mode=0o775, parents=True, exist_ok=True)
|
||||
self.writer = tf.summary.FileWriter(str(self.tensorboard_dir))
|
||||
else:
|
||||
self.writer = None
|
||||
|
||||
def __repr__(self):
|
||||
return ('{name}(dir={log_dir}, use-tf={use_tf}, writer={writer})'.format(name=self.__class__.__name__, **self.__dict__))
|
||||
|
||||
def path(self, mode):
|
||||
valids = ('model', 'best', 'info', 'log')
|
||||
if mode == 'model': return self.model_dir / 'seed-{:}-basic.pth'.format(self.seed)
|
||||
elif mode == 'best' : return self.model_dir / 'seed-{:}-best.pth'.format(self.seed)
|
||||
elif mode == 'info' : return self.log_dir / 'seed-{:}-last-info.pth'.format(self.seed)
|
||||
elif mode == 'log' : return self.log_dir
|
||||
else: raise TypeError('Unknow mode = {:}, valid modes = {:}'.format(mode, valids))
|
||||
|
||||
def extract_log(self):
|
||||
return self.logger_file
|
||||
|
||||
def close(self):
|
||||
self.logger_file.close()
|
||||
if self.writer is not None:
|
||||
self.writer.close()
|
||||
|
||||
def log(self, string, save=True, stdout=False):
|
||||
if stdout:
|
||||
sys.stdout.write(string); sys.stdout.flush()
|
||||
else:
|
||||
print (string)
|
||||
if save:
|
||||
self.logger_file.write('{:}\n'.format(string))
|
||||
self.logger_file.flush()
|
||||
|
||||
def scalar_summary(self, tags, values, step):
|
||||
"""Log a scalar variable."""
|
||||
if not self.use_tf:
|
||||
warnings.warn('Do set use-tensorflow installed but call scalar_summary')
|
||||
else:
|
||||
assert isinstance(tags, list) == isinstance(values, list), 'Type : {:} vs {:}'.format(type(tags), type(values))
|
||||
if not isinstance(tags, list):
|
||||
tags, values = [tags], [values]
|
||||
for tag, value in zip(tags, values):
|
||||
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=value)])
|
||||
self.writer.add_summary(summary, step)
|
||||
self.writer.flush()
|
||||
|
||||
def image_summary(self, tag, images, step):
|
||||
"""Log a list of images."""
|
||||
import scipy
|
||||
if not self.use_tf:
|
||||
warnings.warn('Do set use-tensorflow installed but call scalar_summary')
|
||||
return
|
||||
|
||||
img_summaries = []
|
||||
for i, img in enumerate(images):
|
||||
# Write the image to a string
|
||||
try:
|
||||
s = StringIO()
|
||||
except:
|
||||
s = BytesIO()
|
||||
scipy.misc.toimage(img).save(s, format="png")
|
||||
|
||||
# Create an Image object
|
||||
img_sum = tf.Summary.Image(encoded_image_string=s.getvalue(),
|
||||
height=img.shape[0],
|
||||
width=img.shape[1])
|
||||
# Create a Summary value
|
||||
img_summaries.append(tf.Summary.Value(tag='{}/{}'.format(tag, i), image=img_sum))
|
||||
|
||||
# Create and write Summary
|
||||
summary = tf.Summary(value=img_summaries)
|
||||
self.writer.add_summary(summary, step)
|
||||
self.writer.flush()
|
||||
|
||||
def histo_summary(self, tag, values, step, bins=1000):
|
||||
"""Log a histogram of the tensor of values."""
|
||||
if not self.use_tf: raise ValueError('Do not have tensorflow')
|
||||
import tensorflow as tf
|
||||
|
||||
# Create a histogram using numpy
|
||||
counts, bin_edges = np.histogram(values, bins=bins)
|
||||
|
||||
# Fill the fields of the histogram proto
|
||||
hist = tf.HistogramProto()
|
||||
hist.min = float(np.min(values))
|
||||
hist.max = float(np.max(values))
|
||||
hist.num = int(np.prod(values.shape))
|
||||
hist.sum = float(np.sum(values))
|
||||
hist.sum_squares = float(np.sum(values**2))
|
||||
|
||||
# Drop the start of the first bin
|
||||
bin_edges = bin_edges[1:]
|
||||
|
||||
# Add bin edges and counts
|
||||
for edge in bin_edges:
|
||||
hist.bucket_limit.append(edge)
|
||||
for c in counts:
|
||||
hist.bucket.append(c)
|
||||
|
||||
# Create and write Summary
|
||||
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)])
|
||||
self.writer.add_summary(summary, step)
|
||||
self.writer.flush()
|
102
lib/log_utils/meter.py
Normal file
102
lib/log_utils/meter.py
Normal file
@@ -0,0 +1,102 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import time, sys
|
||||
import numpy as np
|
||||
|
||||
|
||||
class AverageMeter(object):
|
||||
"""Computes and stores the average and current value"""
|
||||
def __init__(self):
|
||||
self.reset()
|
||||
|
||||
def reset(self):
|
||||
self.val = 0.0
|
||||
self.avg = 0.0
|
||||
self.sum = 0.0
|
||||
self.count = 0.0
|
||||
|
||||
def update(self, val, n=1):
|
||||
self.val = val
|
||||
self.sum += val * n
|
||||
self.count += n
|
||||
self.avg = self.sum / self.count
|
||||
|
||||
def __repr__(self):
|
||||
return ('{name}(val={val}, avg={avg}, count={count})'.format(name=self.__class__.__name__, **self.__dict__))
|
||||
|
||||
|
||||
class RecorderMeter(object):
|
||||
"""Computes and stores the minimum loss value and its epoch index"""
|
||||
def __init__(self, total_epoch):
|
||||
self.reset(total_epoch)
|
||||
|
||||
def reset(self, total_epoch):
|
||||
assert total_epoch > 0, 'total_epoch should be greater than 0 vs {:}'.format(total_epoch)
|
||||
self.total_epoch = total_epoch
|
||||
self.current_epoch = 0
|
||||
self.epoch_losses = np.zeros((self.total_epoch, 2), dtype=np.float32) # [epoch, train/val]
|
||||
self.epoch_losses = self.epoch_losses - 1
|
||||
self.epoch_accuracy= np.zeros((self.total_epoch, 2), dtype=np.float32) # [epoch, train/val]
|
||||
self.epoch_accuracy= self.epoch_accuracy
|
||||
|
||||
def update(self, idx, train_loss, train_acc, val_loss, val_acc):
|
||||
assert idx >= 0 and idx < self.total_epoch, 'total_epoch : {} , but update with the {} index'.format(self.total_epoch, idx)
|
||||
self.epoch_losses [idx, 0] = train_loss
|
||||
self.epoch_losses [idx, 1] = val_loss
|
||||
self.epoch_accuracy[idx, 0] = train_acc
|
||||
self.epoch_accuracy[idx, 1] = val_acc
|
||||
self.current_epoch = idx + 1
|
||||
return self.max_accuracy(False) == self.epoch_accuracy[idx, 1]
|
||||
|
||||
def max_accuracy(self, istrain):
|
||||
if self.current_epoch <= 0: return 0
|
||||
if istrain: return self.epoch_accuracy[:self.current_epoch, 0].max()
|
||||
else: return self.epoch_accuracy[:self.current_epoch, 1].max()
|
||||
|
||||
def plot_curve(self, save_path):
|
||||
import matplotlib
|
||||
matplotlib.use('agg')
|
||||
import matplotlib.pyplot as plt
|
||||
title = 'the accuracy/loss curve of train/val'
|
||||
dpi = 100
|
||||
width, height = 1600, 1000
|
||||
legend_fontsize = 10
|
||||
figsize = width / float(dpi), height / float(dpi)
|
||||
|
||||
fig = plt.figure(figsize=figsize)
|
||||
x_axis = np.array([i for i in range(self.total_epoch)]) # epochs
|
||||
y_axis = np.zeros(self.total_epoch)
|
||||
|
||||
plt.xlim(0, self.total_epoch)
|
||||
plt.ylim(0, 100)
|
||||
interval_y = 5
|
||||
interval_x = 5
|
||||
plt.xticks(np.arange(0, self.total_epoch + interval_x, interval_x))
|
||||
plt.yticks(np.arange(0, 100 + interval_y, interval_y))
|
||||
plt.grid()
|
||||
plt.title(title, fontsize=20)
|
||||
plt.xlabel('the training epoch', fontsize=16)
|
||||
plt.ylabel('accuracy', fontsize=16)
|
||||
|
||||
y_axis[:] = self.epoch_accuracy[:, 0]
|
||||
plt.plot(x_axis, y_axis, color='g', linestyle='-', label='train-accuracy', lw=2)
|
||||
plt.legend(loc=4, fontsize=legend_fontsize)
|
||||
|
||||
y_axis[:] = self.epoch_accuracy[:, 1]
|
||||
plt.plot(x_axis, y_axis, color='y', linestyle='-', label='valid-accuracy', lw=2)
|
||||
plt.legend(loc=4, fontsize=legend_fontsize)
|
||||
|
||||
|
||||
y_axis[:] = self.epoch_losses[:, 0]
|
||||
plt.plot(x_axis, y_axis*50, color='g', linestyle=':', label='train-loss-x50', lw=2)
|
||||
plt.legend(loc=4, fontsize=legend_fontsize)
|
||||
|
||||
y_axis[:] = self.epoch_losses[:, 1]
|
||||
plt.plot(x_axis, y_axis*50, color='y', linestyle=':', label='valid-loss-x50', lw=2)
|
||||
plt.legend(loc=4, fontsize=legend_fontsize)
|
||||
|
||||
if save_path is not None:
|
||||
fig.savefig(save_path, dpi=dpi, bbox_inches='tight')
|
||||
print ('---- save figure {} into {}'.format(title, save_path))
|
||||
plt.close(fig)
|
18
lib/log_utils/print_logger.py
Normal file
18
lib/log_utils/print_logger.py
Normal file
@@ -0,0 +1,18 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import importlib, warnings
|
||||
import os, sys, time, numpy as np
|
||||
|
||||
|
||||
class PrintLogger(object):
|
||||
|
||||
def __init__(self):
|
||||
"""Create a summary writer logging to log_dir."""
|
||||
self.name = 'PrintLogger'
|
||||
|
||||
def log(self, string):
|
||||
print (string)
|
||||
|
||||
def close(self):
|
||||
print ('-'*30 + ' close printer ' + '-'*30)
|
52
lib/log_utils/time_utils.py
Normal file
52
lib/log_utils/time_utils.py
Normal file
@@ -0,0 +1,52 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
#
|
||||
import time, sys
|
||||
import numpy as np
|
||||
|
||||
def time_for_file():
|
||||
ISOTIMEFORMAT='%d-%h-at-%H-%M-%S'
|
||||
return '{}'.format(time.strftime( ISOTIMEFORMAT, time.gmtime(time.time()) ))
|
||||
|
||||
def time_string():
|
||||
ISOTIMEFORMAT='%Y-%m-%d %X'
|
||||
string = '[{}]'.format(time.strftime( ISOTIMEFORMAT, time.gmtime(time.time()) ))
|
||||
return string
|
||||
|
||||
def time_string_short():
|
||||
ISOTIMEFORMAT='%Y%m%d'
|
||||
string = '{}'.format(time.strftime( ISOTIMEFORMAT, time.gmtime(time.time()) ))
|
||||
return string
|
||||
|
||||
def time_print(string, is_print=True):
|
||||
if (is_print):
|
||||
print('{} : {}'.format(time_string(), string))
|
||||
|
||||
def convert_size2str(torch_size):
|
||||
dims = len(torch_size)
|
||||
string = '['
|
||||
for idim in range(dims):
|
||||
string = string + ' {}'.format(torch_size[idim])
|
||||
return string + ']'
|
||||
|
||||
def convert_secs2time(epoch_time, return_str=False):
|
||||
need_hour = int(epoch_time / 3600)
|
||||
need_mins = int((epoch_time - 3600*need_hour) / 60)
|
||||
need_secs = int(epoch_time - 3600*need_hour - 60*need_mins)
|
||||
if return_str:
|
||||
str = '[{:02d}:{:02d}:{:02d}]'.format(need_hour, need_mins, need_secs)
|
||||
return str
|
||||
else:
|
||||
return need_hour, need_mins, need_secs
|
||||
|
||||
def print_log(print_string, log):
|
||||
#if isinstance(log, Logger): log.log('{:}'.format(print_string))
|
||||
if hasattr(log, 'log'): log.log('{:}'.format(print_string))
|
||||
else:
|
||||
print("{:}".format(print_string))
|
||||
if log is not None:
|
||||
log.write('{:}\n'.format(print_string))
|
||||
log.flush()
|
Reference in New Issue
Block a user