Add more algorithms

This commit is contained in:
D-X-Y
2019-09-28 18:24:47 +10:00
parent bfd6b648fd
commit cfb462e463
286 changed files with 10557 additions and 122955 deletions

View File

@@ -3,75 +3,181 @@
##################################################
import os, sys, torch
import os.path as osp
import numpy as np
import torchvision.datasets as dset
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
from utils import Cutout
from .TieredImageNet import TieredImageNet
from PIL import Image
from .DownsampledImageNet import ImageNet16
Dataset2Class = {'cifar10' : 10,
'cifar100': 100,
'tiered' : -1,
'imagenet-1k-s':1000,
'imagenet-1k' : 1000,
'imagenet-100': 100}
'ImageNet16' : 1000,
'ImageNet16-150': 150,
'ImageNet16-120': 120,
'ImageNet16-200': 200}
class CUTOUT(object):
def __init__(self, length):
self.length = length
def __repr__(self):
return ('{name}(length={length})'.format(name=self.__class__.__name__, **self.__dict__))
def __call__(self, img):
h, w = img.size(1), img.size(2)
mask = np.ones((h, w), np.float32)
y = np.random.randint(h)
x = np.random.randint(w)
y1 = np.clip(y - self.length // 2, 0, h)
y2 = np.clip(y + self.length // 2, 0, h)
x1 = np.clip(x - self.length // 2, 0, w)
x2 = np.clip(x + self.length // 2, 0, w)
mask[y1: y2, x1: x2] = 0.
mask = torch.from_numpy(mask)
mask = mask.expand_as(img)
img *= mask
return img
imagenet_pca = {
'eigval': np.asarray([0.2175, 0.0188, 0.0045]),
'eigvec': np.asarray([
[-0.5675, 0.7192, 0.4009],
[-0.5808, -0.0045, -0.8140],
[-0.5836, -0.6948, 0.4203],
])
}
class Lighting(object):
def __init__(self, alphastd,
eigval=imagenet_pca['eigval'],
eigvec=imagenet_pca['eigvec']):
self.alphastd = alphastd
assert eigval.shape == (3,)
assert eigvec.shape == (3, 3)
self.eigval = eigval
self.eigvec = eigvec
def __call__(self, img):
if self.alphastd == 0.:
return img
rnd = np.random.randn(3) * self.alphastd
rnd = rnd.astype('float32')
v = rnd
old_dtype = np.asarray(img).dtype
v = v * self.eigval
v = v.reshape((3, 1))
inc = np.dot(self.eigvec, v).reshape((3,))
img = np.add(img, inc)
if old_dtype == np.uint8:
img = np.clip(img, 0, 255)
img = Image.fromarray(img.astype(old_dtype), 'RGB')
return img
def __repr__(self):
return self.__class__.__name__ + '()'
def get_datasets(name, root, cutout):
# Mean + Std
if name == 'cifar10':
mean = [x / 255 for x in [125.3, 123.0, 113.9]]
std = [x / 255 for x in [63.0, 62.1, 66.7]]
std = [x / 255 for x in [63.0, 62.1, 66.7]]
elif name == 'cifar100':
mean = [x / 255 for x in [129.3, 124.1, 112.4]]
std = [x / 255 for x in [68.2, 65.4, 70.4]]
elif name == 'tiered':
std = [x / 255 for x in [68.2, 65.4, 70.4]]
elif name.startswith('imagenet-1k'):
mean, std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
elif name == 'imagenet-1k' or name == 'imagenet-100':
mean, std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
else: raise TypeError("Unknow dataset : {:}".format(name))
elif name.startswith('ImageNet16'):
mean = [x / 255 for x in [122.68, 116.66, 104.01]]
std = [x / 255 for x in [63.22, 61.26 , 65.09]]
else:
raise TypeError("Unknow dataset : {:}".format(name))
# Data Argumentation
if name == 'cifar10' or name == 'cifar100':
lists = [transforms.RandomHorizontalFlip(), transforms.RandomCrop(32, padding=4), transforms.ToTensor(),
transforms.Normalize(mean, std)]
if cutout > 0 : lists += [Cutout(cutout)]
lists = [transforms.RandomHorizontalFlip(), transforms.RandomCrop(32, padding=4), transforms.ToTensor(), transforms.Normalize(mean, std)]
if cutout > 0 : lists += [CUTOUT(cutout)]
train_transform = transforms.Compose(lists)
test_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean, std)])
xshape = (1, 3, 32, 32)
elif name.startswith('ImageNet16'):
lists = [transforms.RandomHorizontalFlip(), transforms.RandomCrop(16, padding=2), transforms.ToTensor(), transforms.Normalize(mean, std)]
if cutout > 0 : lists += [CUTOUT(cutout)]
train_transform = transforms.Compose(lists)
test_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean, std)])
xshape = (1, 3, 16, 16)
elif name == 'tiered':
lists = [transforms.RandomHorizontalFlip(), transforms.RandomCrop(80, padding=4), transforms.ToTensor(), transforms.Normalize(mean, std)]
if cutout > 0 : lists += [Cutout(cutout)]
if cutout > 0 : lists += [CUTOUT(cutout)]
train_transform = transforms.Compose(lists)
test_transform = transforms.Compose([transforms.CenterCrop(80), transforms.ToTensor(), transforms.Normalize(mean, std)])
elif name == 'imagenet-1k' or name == 'imagenet-100':
xshape = (1, 3, 32, 32)
elif name.startswith('imagenet-1k'):
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
train_transform = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(
if name == 'imagenet-1k':
xlists = [transforms.RandomResizedCrop(224)]
xlists.append(
transforms.ColorJitter(
brightness=0.4,
contrast=0.4,
saturation=0.4,
hue=0.2),
transforms.ToTensor(),
normalize,
])
test_transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize])
else: raise TypeError("Unknow dataset : {:}".format(name))
hue=0.2))
xlists.append( Lighting(0.1))
elif name == 'imagenet-1k-s':
xlists = [transforms.RandomResizedCrop(224, scale=(0.2, 1.0))]
else: raise ValueError('invalid name : {:}'.format(name))
xlists.append( transforms.RandomHorizontalFlip(p=0.5) )
xlists.append( transforms.ToTensor() )
xlists.append( normalize )
train_transform = transforms.Compose(xlists)
test_transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize])
xshape = (1, 3, 224, 224)
else:
raise TypeError("Unknow dataset : {:}".format(name))
if name == 'cifar10':
train_data = dset.CIFAR10 (root, train=True , transform=train_transform, download=True)
test_data = dset.CIFAR10 (root, train=False, transform=test_transform , download=True)
assert len(train_data) == 50000 and len(test_data) == 10000
elif name == 'cifar100':
train_data = dset.CIFAR100(root, train=True , transform=train_transform, download=True)
test_data = dset.CIFAR100(root, train=False, transform=test_transform , download=True)
elif name == 'imagenet-1k' or name == 'imagenet-100':
assert len(train_data) == 50000 and len(test_data) == 10000
elif name.startswith('imagenet-1k'):
train_data = dset.ImageFolder(osp.join(root, 'train'), train_transform)
test_data = dset.ImageFolder(osp.join(root, 'val'), test_transform)
assert len(train_data) == 1281167 and len(test_data) == 50000, 'invalid number of images : {:} & {:} vs {:} & {:}'.format(len(train_data), len(test_data), 1281167, 50000)
elif name == 'ImageNet16':
train_data = ImageNet16(root, True , train_transform)
test_data = ImageNet16(root, False, test_transform)
assert len(train_data) == 1281167 and len(test_data) == 50000
elif name == 'ImageNet16-120':
train_data = ImageNet16(root, True , train_transform, 120)
test_data = ImageNet16(root, False, test_transform , 120)
assert len(train_data) == 151700 and len(test_data) == 6000
elif name == 'ImageNet16-150':
train_data = ImageNet16(root, True , train_transform, 150)
test_data = ImageNet16(root, False, test_transform , 150)
assert len(train_data) == 190272 and len(test_data) == 7500
elif name == 'ImageNet16-200':
train_data = ImageNet16(root, True , train_transform, 200)
test_data = ImageNet16(root, False, test_transform , 200)
assert len(train_data) == 254775 and len(test_data) == 10000
else: raise TypeError("Unknow dataset : {:}".format(name))
class_num = Dataset2Class[name]
return train_data, test_data, class_num
return train_data, test_data, xshape, class_num
#if __name__ == '__main__':
# train_data, test_data, xshape, class_num = dataset = get_datasets('cifar10', '/data02/dongxuanyi/.torch/cifar.python/', -1)
# import pdb; pdb.set_trace()