Update LFNA

This commit is contained in:
D-X-Y
2021-05-22 17:36:09 +08:00
parent bc42ab3c08
commit ce787df02c
3 changed files with 94 additions and 11 deletions

View File

@@ -93,6 +93,67 @@ def epoch_evaluate(loader, meta_model, base_model, criterion, device, logger):
return loss_meter
def pretrain(base_model, meta_model, criterion, xenv, args, logger):
optimizer = torch.optim.Adam(
meta_model.parameters(),
lr=args.lr,
weight_decay=args.weight_decay,
amsgrad=True,
)
meta_model.set_best_dir(logger.path(None) / "checkpoint-pretrain")
for iepoch in range(args.epochs):
total_meta_losses, total_match_losses = [], []
for ibatch in range(args.meta_batch):
rand_index = random.randint(0, meta_model.meta_length - xenv.seq_length - 1)
timestamps = meta_model.meta_timestamps[
rand_index : rand_index + xenv.seq_length
]
seq_timestamps, (seq_inputs, seq_targets) = xenv.seq_call(timestamps)
[seq_containers], time_embeds = meta_model(
torch.unsqueeze(timestamps, dim=0)
)
# performance loss
losses = []
seq_inputs, seq_targets = seq_inputs.to(args.device), seq_targets.to(
args.device
)
for container, inputs, targets in zip(
seq_containers, seq_inputs, seq_targets
):
predictions = base_model.forward_with_container(inputs, container)
loss = criterion(predictions, targets)
losses.append(loss)
meta_loss = torch.stack(losses).mean()
match_loss = criterion(
torch.squeeze(time_embeds, dim=0),
meta_model.super_meta_embed[rand_index : rand_index + xenv.seq_length],
)
# batch_loss = meta_loss + match_loss * 0.1
# total_losses.append(batch_loss)
total_meta_losses.append(meta_loss)
total_match_losses.append(match_loss)
final_meta_loss = torch.stack(total_meta_losses).mean()
final_match_loss = torch.stack(total_match_losses).mean()
total_loss = final_meta_loss + final_match_loss
total_loss.backward()
optimizer.step()
# success
success, best_score = meta_model.save_best(-total_loss.item())
logger.log(
"{:} [{:04d}/{:}] loss : {:.5f} = {:.5f} + {:.5f} (match)".format(
time_string(),
iepoch,
args.epochs,
total_loss.item(),
final_meta_loss.item(),
final_match_loss.item(),
)
+ ", batch={:}".format(len(total_meta_losses))
)
def main(args):
logger, env_info, model_kwargs = lfna_setup(args)
train_env = get_synthetic_env(mode="train", version=args.env_version)
@@ -148,6 +209,8 @@ def main(args):
logger.log("The scheduler is\n{:}".format(lr_scheduler))
logger.log("Per epoch iterations = {:}".format(len(train_env_loader)))
pretrain(base_model, meta_model, criterion, train_env, args, logger)
if logger.path("model").exists():
ckp_data = torch.load(logger.path("model"))
base_model.load_state_dict(ckp_data["base_model"])
@@ -345,7 +408,7 @@ if __name__ == "__main__":
parser.add_argument(
"--lr",
type=float,
default=0.005,
default=0.002,
help="The initial learning rate for the optimizer (default is Adam)",
)
parser.add_argument(