Prototype MAML

This commit is contained in:
D-X-Y
2021-05-10 01:02:38 +08:00
parent 6e7b1c551f
commit cbd2afb4ef
14 changed files with 1497 additions and 702 deletions

View File

@@ -5,10 +5,18 @@ from os import path as osp
from typing import List, Text
import torch
__all__ = ['change_key', 'get_cell_based_tiny_net', 'get_search_spaces', 'get_cifar_models', 'get_imagenet_models', \
'obtain_model', 'obtain_search_model', 'load_net_from_checkpoint', \
'CellStructure', 'CellArchitectures'
]
__all__ = [
"change_key",
"get_cell_based_tiny_net",
"get_search_spaces",
"get_cifar_models",
"get_imagenet_models",
"obtain_model",
"obtain_search_model",
"load_net_from_checkpoint",
"CellStructure",
"CellArchitectures",
]
# useful modules
from config_utils import dict2config
@@ -18,178 +26,301 @@ from models.cell_searchs import CellStructure, CellArchitectures
# Cell-based NAS Models
def get_cell_based_tiny_net(config):
if isinstance(config, dict): config = dict2config(config, None) # to support the argument being a dict
super_type = getattr(config, 'super_type', 'basic')
group_names = ['DARTS-V1', 'DARTS-V2', 'GDAS', 'SETN', 'ENAS', 'RANDOM', 'generic']
if super_type == 'basic' and config.name in group_names:
from .cell_searchs import nas201_super_nets as nas_super_nets
try:
return nas_super_nets[config.name](config.C, config.N, config.max_nodes, config.num_classes, config.space, config.affine, config.track_running_stats)
except:
return nas_super_nets[config.name](config.C, config.N, config.max_nodes, config.num_classes, config.space)
elif super_type == 'search-shape':
from .shape_searchs import GenericNAS301Model
genotype = CellStructure.str2structure(config.genotype)
return GenericNAS301Model(config.candidate_Cs, config.max_num_Cs, genotype, config.num_classes, config.affine, config.track_running_stats)
elif super_type == 'nasnet-super':
from .cell_searchs import nasnet_super_nets as nas_super_nets
return nas_super_nets[config.name](config.C, config.N, config.steps, config.multiplier, \
config.stem_multiplier, config.num_classes, config.space, config.affine, config.track_running_stats)
elif config.name == 'infer.tiny':
from .cell_infers import TinyNetwork
if hasattr(config, 'genotype'):
genotype = config.genotype
elif hasattr(config, 'arch_str'):
genotype = CellStructure.str2structure(config.arch_str)
else: raise ValueError('Can not find genotype from this config : {:}'.format(config))
return TinyNetwork(config.C, config.N, genotype, config.num_classes)
elif config.name == 'infer.shape.tiny':
from .shape_infers import DynamicShapeTinyNet
if isinstance(config.channels, str):
channels = tuple([int(x) for x in config.channels.split(':')])
else: channels = config.channels
genotype = CellStructure.str2structure(config.genotype)
return DynamicShapeTinyNet(channels, genotype, config.num_classes)
elif config.name == 'infer.nasnet-cifar':
from .cell_infers import NASNetonCIFAR
raise NotImplementedError
else:
raise ValueError('invalid network name : {:}'.format(config.name))
if isinstance(config, dict):
config = dict2config(config, None) # to support the argument being a dict
super_type = getattr(config, "super_type", "basic")
group_names = ["DARTS-V1", "DARTS-V2", "GDAS", "SETN", "ENAS", "RANDOM", "generic"]
if super_type == "basic" and config.name in group_names:
from .cell_searchs import nas201_super_nets as nas_super_nets
try:
return nas_super_nets[config.name](
config.C,
config.N,
config.max_nodes,
config.num_classes,
config.space,
config.affine,
config.track_running_stats,
)
except:
return nas_super_nets[config.name](
config.C, config.N, config.max_nodes, config.num_classes, config.space
)
elif super_type == "search-shape":
from .shape_searchs import GenericNAS301Model
genotype = CellStructure.str2structure(config.genotype)
return GenericNAS301Model(
config.candidate_Cs,
config.max_num_Cs,
genotype,
config.num_classes,
config.affine,
config.track_running_stats,
)
elif super_type == "nasnet-super":
from .cell_searchs import nasnet_super_nets as nas_super_nets
return nas_super_nets[config.name](
config.C,
config.N,
config.steps,
config.multiplier,
config.stem_multiplier,
config.num_classes,
config.space,
config.affine,
config.track_running_stats,
)
elif config.name == "infer.tiny":
from .cell_infers import TinyNetwork
if hasattr(config, "genotype"):
genotype = config.genotype
elif hasattr(config, "arch_str"):
genotype = CellStructure.str2structure(config.arch_str)
else:
raise ValueError(
"Can not find genotype from this config : {:}".format(config)
)
return TinyNetwork(config.C, config.N, genotype, config.num_classes)
elif config.name == "infer.shape.tiny":
from .shape_infers import DynamicShapeTinyNet
if isinstance(config.channels, str):
channels = tuple([int(x) for x in config.channels.split(":")])
else:
channels = config.channels
genotype = CellStructure.str2structure(config.genotype)
return DynamicShapeTinyNet(channels, genotype, config.num_classes)
elif config.name == "infer.nasnet-cifar":
from .cell_infers import NASNetonCIFAR
raise NotImplementedError
else:
raise ValueError("invalid network name : {:}".format(config.name))
# obtain the search space, i.e., a dict mapping the operation name into a python-function for this op
def get_search_spaces(xtype, name) -> List[Text]:
if xtype == 'cell' or xtype == 'tss': # The topology search space.
from .cell_operations import SearchSpaceNames
assert name in SearchSpaceNames, 'invalid name [{:}] in {:}'.format(name, SearchSpaceNames.keys())
return SearchSpaceNames[name]
elif xtype == 'sss': # The size search space.
if name in ['nats-bench', 'nats-bench-size']:
return {'candidates': [8, 16, 24, 32, 40, 48, 56, 64],
'numbers': 5}
if xtype == "cell" or xtype == "tss": # The topology search space.
from .cell_operations import SearchSpaceNames
assert name in SearchSpaceNames, "invalid name [{:}] in {:}".format(
name, SearchSpaceNames.keys()
)
return SearchSpaceNames[name]
elif xtype == "sss": # The size search space.
if name in ["nats-bench", "nats-bench-size"]:
return {"candidates": [8, 16, 24, 32, 40, 48, 56, 64], "numbers": 5}
else:
raise ValueError("Invalid name : {:}".format(name))
else:
raise ValueError('Invalid name : {:}'.format(name))
else:
raise ValueError('invalid search-space type is {:}'.format(xtype))
raise ValueError("invalid search-space type is {:}".format(xtype))
def get_cifar_models(config, extra_path=None):
super_type = getattr(config, 'super_type', 'basic')
if super_type == 'basic':
from .CifarResNet import CifarResNet
from .CifarDenseNet import DenseNet
from .CifarWideResNet import CifarWideResNet
if config.arch == 'resnet':
return CifarResNet(config.module, config.depth, config.class_num, config.zero_init_residual)
elif config.arch == 'densenet':
return DenseNet(config.growthRate, config.depth, config.reduction, config.class_num, config.bottleneck)
elif config.arch == 'wideresnet':
return CifarWideResNet(config.depth, config.wide_factor, config.class_num, config.dropout)
super_type = getattr(config, "super_type", "basic")
if super_type == "basic":
from .CifarResNet import CifarResNet
from .CifarDenseNet import DenseNet
from .CifarWideResNet import CifarWideResNet
if config.arch == "resnet":
return CifarResNet(
config.module, config.depth, config.class_num, config.zero_init_residual
)
elif config.arch == "densenet":
return DenseNet(
config.growthRate,
config.depth,
config.reduction,
config.class_num,
config.bottleneck,
)
elif config.arch == "wideresnet":
return CifarWideResNet(
config.depth, config.wide_factor, config.class_num, config.dropout
)
else:
raise ValueError("invalid module type : {:}".format(config.arch))
elif super_type.startswith("infer"):
from .shape_infers import InferWidthCifarResNet
from .shape_infers import InferDepthCifarResNet
from .shape_infers import InferCifarResNet
from .cell_infers import NASNetonCIFAR
assert len(super_type.split("-")) == 2, "invalid super_type : {:}".format(
super_type
)
infer_mode = super_type.split("-")[1]
if infer_mode == "width":
return InferWidthCifarResNet(
config.module,
config.depth,
config.xchannels,
config.class_num,
config.zero_init_residual,
)
elif infer_mode == "depth":
return InferDepthCifarResNet(
config.module,
config.depth,
config.xblocks,
config.class_num,
config.zero_init_residual,
)
elif infer_mode == "shape":
return InferCifarResNet(
config.module,
config.depth,
config.xblocks,
config.xchannels,
config.class_num,
config.zero_init_residual,
)
elif infer_mode == "nasnet.cifar":
genotype = config.genotype
if extra_path is not None: # reload genotype by extra_path
if not osp.isfile(extra_path):
raise ValueError("invalid extra_path : {:}".format(extra_path))
xdata = torch.load(extra_path)
current_epoch = xdata["epoch"]
genotype = xdata["genotypes"][current_epoch - 1]
C = config.C if hasattr(config, "C") else config.ichannel
N = config.N if hasattr(config, "N") else config.layers
return NASNetonCIFAR(
C, N, config.stem_multi, config.class_num, genotype, config.auxiliary
)
else:
raise ValueError("invalid infer-mode : {:}".format(infer_mode))
else:
raise ValueError('invalid module type : {:}'.format(config.arch))
elif super_type.startswith('infer'):
from .shape_infers import InferWidthCifarResNet
from .shape_infers import InferDepthCifarResNet
from .shape_infers import InferCifarResNet
from .cell_infers import NASNetonCIFAR
assert len(super_type.split('-')) == 2, 'invalid super_type : {:}'.format(super_type)
infer_mode = super_type.split('-')[1]
if infer_mode == 'width':
return InferWidthCifarResNet(config.module, config.depth, config.xchannels, config.class_num, config.zero_init_residual)
elif infer_mode == 'depth':
return InferDepthCifarResNet(config.module, config.depth, config.xblocks, config.class_num, config.zero_init_residual)
elif infer_mode == 'shape':
return InferCifarResNet(config.module, config.depth, config.xblocks, config.xchannels, config.class_num, config.zero_init_residual)
elif infer_mode == 'nasnet.cifar':
genotype = config.genotype
if extra_path is not None: # reload genotype by extra_path
if not osp.isfile(extra_path): raise ValueError('invalid extra_path : {:}'.format(extra_path))
xdata = torch.load(extra_path)
current_epoch = xdata['epoch']
genotype = xdata['genotypes'][current_epoch-1]
C = config.C if hasattr(config, 'C') else config.ichannel
N = config.N if hasattr(config, 'N') else config.layers
return NASNetonCIFAR(C, N, config.stem_multi, config.class_num, genotype, config.auxiliary)
else:
raise ValueError('invalid infer-mode : {:}'.format(infer_mode))
else:
raise ValueError('invalid super-type : {:}'.format(super_type))
raise ValueError("invalid super-type : {:}".format(super_type))
def get_imagenet_models(config):
super_type = getattr(config, 'super_type', 'basic')
if super_type == 'basic':
from .ImageNet_ResNet import ResNet
from .ImageNet_MobileNetV2 import MobileNetV2
if config.arch == 'resnet':
return ResNet(config.block_name, config.layers, config.deep_stem, config.class_num, config.zero_init_residual, config.groups, config.width_per_group)
elif config.arch == 'mobilenet_v2':
return MobileNetV2(config.class_num, config.width_multi, config.input_channel, config.last_channel, 'InvertedResidual', config.dropout)
super_type = getattr(config, "super_type", "basic")
if super_type == "basic":
from .ImageNet_ResNet import ResNet
from .ImageNet_MobileNetV2 import MobileNetV2
if config.arch == "resnet":
return ResNet(
config.block_name,
config.layers,
config.deep_stem,
config.class_num,
config.zero_init_residual,
config.groups,
config.width_per_group,
)
elif config.arch == "mobilenet_v2":
return MobileNetV2(
config.class_num,
config.width_multi,
config.input_channel,
config.last_channel,
"InvertedResidual",
config.dropout,
)
else:
raise ValueError("invalid arch : {:}".format(config.arch))
elif super_type.startswith("infer"): # NAS searched architecture
assert len(super_type.split("-")) == 2, "invalid super_type : {:}".format(
super_type
)
infer_mode = super_type.split("-")[1]
if infer_mode == "shape":
from .shape_infers import InferImagenetResNet
from .shape_infers import InferMobileNetV2
if config.arch == "resnet":
return InferImagenetResNet(
config.block_name,
config.layers,
config.xblocks,
config.xchannels,
config.deep_stem,
config.class_num,
config.zero_init_residual,
)
elif config.arch == "MobileNetV2":
return InferMobileNetV2(
config.class_num, config.xchannels, config.xblocks, config.dropout
)
else:
raise ValueError("invalid arch-mode : {:}".format(config.arch))
else:
raise ValueError("invalid infer-mode : {:}".format(infer_mode))
else:
raise ValueError('invalid arch : {:}'.format( config.arch ))
elif super_type.startswith('infer'): # NAS searched architecture
assert len(super_type.split('-')) == 2, 'invalid super_type : {:}'.format(super_type)
infer_mode = super_type.split('-')[1]
if infer_mode == 'shape':
from .shape_infers import InferImagenetResNet
from .shape_infers import InferMobileNetV2
if config.arch == 'resnet':
return InferImagenetResNet(config.block_name, config.layers, config.xblocks, config.xchannels, config.deep_stem, config.class_num, config.zero_init_residual)
elif config.arch == "MobileNetV2":
return InferMobileNetV2(config.class_num, config.xchannels, config.xblocks, config.dropout)
else:
raise ValueError('invalid arch-mode : {:}'.format(config.arch))
else:
raise ValueError('invalid infer-mode : {:}'.format(infer_mode))
else:
raise ValueError('invalid super-type : {:}'.format(super_type))
raise ValueError("invalid super-type : {:}".format(super_type))
# Try to obtain the network by config.
def obtain_model(config, extra_path=None):
if config.dataset == 'cifar':
return get_cifar_models(config, extra_path)
elif config.dataset == 'imagenet':
return get_imagenet_models(config)
else:
raise ValueError('invalid dataset in the model config : {:}'.format(config))
if config.dataset == "cifar":
return get_cifar_models(config, extra_path)
elif config.dataset == "imagenet":
return get_imagenet_models(config)
else:
raise ValueError("invalid dataset in the model config : {:}".format(config))
def obtain_search_model(config):
if config.dataset == 'cifar':
if config.arch == 'resnet':
from .shape_searchs import SearchWidthCifarResNet
from .shape_searchs import SearchDepthCifarResNet
from .shape_searchs import SearchShapeCifarResNet
if config.search_mode == 'width':
return SearchWidthCifarResNet(config.module, config.depth, config.class_num)
elif config.search_mode == 'depth':
return SearchDepthCifarResNet(config.module, config.depth, config.class_num)
elif config.search_mode == 'shape':
return SearchShapeCifarResNet(config.module, config.depth, config.class_num)
else: raise ValueError('invalid search mode : {:}'.format(config.search_mode))
elif config.arch == 'simres':
from .shape_searchs import SearchWidthSimResNet
if config.search_mode == 'width':
return SearchWidthSimResNet(config.depth, config.class_num)
else: raise ValueError('invalid search mode : {:}'.format(config.search_mode))
if config.dataset == "cifar":
if config.arch == "resnet":
from .shape_searchs import SearchWidthCifarResNet
from .shape_searchs import SearchDepthCifarResNet
from .shape_searchs import SearchShapeCifarResNet
if config.search_mode == "width":
return SearchWidthCifarResNet(
config.module, config.depth, config.class_num
)
elif config.search_mode == "depth":
return SearchDepthCifarResNet(
config.module, config.depth, config.class_num
)
elif config.search_mode == "shape":
return SearchShapeCifarResNet(
config.module, config.depth, config.class_num
)
else:
raise ValueError("invalid search mode : {:}".format(config.search_mode))
elif config.arch == "simres":
from .shape_searchs import SearchWidthSimResNet
if config.search_mode == "width":
return SearchWidthSimResNet(config.depth, config.class_num)
else:
raise ValueError("invalid search mode : {:}".format(config.search_mode))
else:
raise ValueError(
"invalid arch : {:} for dataset [{:}]".format(
config.arch, config.dataset
)
)
elif config.dataset == "imagenet":
from .shape_searchs import SearchShapeImagenetResNet
assert config.search_mode == "shape", "invalid search-mode : {:}".format(
config.search_mode
)
if config.arch == "resnet":
return SearchShapeImagenetResNet(
config.block_name, config.layers, config.deep_stem, config.class_num
)
else:
raise ValueError("invalid model config : {:}".format(config))
else:
raise ValueError('invalid arch : {:} for dataset [{:}]'.format(config.arch, config.dataset))
elif config.dataset == 'imagenet':
from .shape_searchs import SearchShapeImagenetResNet
assert config.search_mode == 'shape', 'invalid search-mode : {:}'.format( config.search_mode )
if config.arch == 'resnet':
return SearchShapeImagenetResNet(config.block_name, config.layers, config.deep_stem, config.class_num)
else:
raise ValueError('invalid model config : {:}'.format(config))
else:
raise ValueError('invalid dataset in the model config : {:}'.format(config))
raise ValueError("invalid dataset in the model config : {:}".format(config))
def load_net_from_checkpoint(checkpoint):
assert osp.isfile(checkpoint), 'checkpoint {:} does not exist'.format(checkpoint)
checkpoint = torch.load(checkpoint)
model_config = dict2config(checkpoint['model-config'], None)
model = obtain_model(model_config)
model.load_state_dict(checkpoint['base-model'])
return model
assert osp.isfile(checkpoint), "checkpoint {:} does not exist".format(checkpoint)
checkpoint = torch.load(checkpoint)
model_config = dict2config(checkpoint["model-config"], None)
model = obtain_model(model_config)
model.load_state_dict(checkpoint["base-model"])
return model