Update NATS-Bench (tss version 1.0) and remove the trace of 301
This commit is contained in:
@@ -26,7 +26,7 @@ from log_utils import time_string
|
||||
from models import get_cell_based_tiny_net, CellStructure
|
||||
|
||||
|
||||
def test_api(api, is_301=True):
|
||||
def test_api(api, sss_or_tss=True):
|
||||
print('{:} start testing the api : {:}'.format(time_string(), api))
|
||||
api.clear_params(12)
|
||||
api.reload(index=12)
|
||||
@@ -39,7 +39,7 @@ def test_api(api, is_301=True):
|
||||
info = api.query_by_index(113, 'cifar100')
|
||||
print('{:}\n'.format(info))
|
||||
|
||||
info = api.query_meta_info_by_index(115, '90' if is_301 else '200')
|
||||
info = api.query_meta_info_by_index(115, '90' if sss_or_tss else '200')
|
||||
print('{:}\n'.format(info))
|
||||
|
||||
for dataset in ['cifar10', 'cifar100', 'ImageNet16-120']:
|
||||
@@ -48,6 +48,7 @@ def test_api(api, is_301=True):
|
||||
print('')
|
||||
params = api.get_net_param(12, 'cifar10', None)
|
||||
|
||||
import pdb; pdb.set_trace()
|
||||
# Obtain the config and create the network
|
||||
config = api.get_net_config(12, 'cifar10')
|
||||
print('{:}\n'.format(config))
|
||||
@@ -74,7 +75,7 @@ def test_api(api, is_301=True):
|
||||
print('{:}\n'.format(info))
|
||||
print('{:} finish testing the api : {:}'.format(time_string(), api))
|
||||
|
||||
if not is_301:
|
||||
if not sss_or_tss:
|
||||
arch_str = '|nor_conv_3x3~0|+|nor_conv_3x3~0|avg_pool_3x3~1|+|skip_connect~0|nor_conv_3x3~1|skip_connect~2|'
|
||||
matrix = api.str2matrix(arch_str)
|
||||
print('Compute the adjacency matrix of {:}'.format(arch_str))
|
||||
@@ -88,13 +89,13 @@ if __name__ == '__main__':
|
||||
# api201 = create('./output/NATS-Bench-topology/process-FULL', 'topology', fast_mode=True, verbose=True)
|
||||
for fast_mode in [True, False]:
|
||||
for verbose in [True, False]:
|
||||
api201 = create(None, 'tss', fast_mode=fast_mode, verbose=True)
|
||||
api_nats_tss = create(None, 'tss', fast_mode=fast_mode, verbose=True)
|
||||
print('{:} create with fast_mode={:} and verbose={:}'.format(time_string(), fast_mode, verbose))
|
||||
test_api(api201, False)
|
||||
test_api(api_nats_tss, False)
|
||||
|
||||
for fast_mode in [True, False]:
|
||||
for verbose in [True, False]:
|
||||
print('{:} create with fast_mode={:} and verbose={:}'.format(time_string(), fast_mode, verbose))
|
||||
api301 = create(None, 'size', fast_mode=fast_mode, verbose=True)
|
||||
print('{:} --->>> {:}'.format(time_string(), api301))
|
||||
test_api(api301, True)
|
||||
api_nats_sss = create(None, 'size', fast_mode=fast_mode, verbose=True)
|
||||
print('{:} --->>> {:}'.format(time_string(), api_nats_sss))
|
||||
test_api(api_nats_sss, True)
|
||||
|
129
exps/NATS-Bench/tss-collect-patcher.py
Normal file
129
exps/NATS-Bench/tss-collect-patcher.py
Normal file
@@ -0,0 +1,129 @@
|
||||
##############################################################################
|
||||
# NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size #
|
||||
##############################################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.08 #
|
||||
##############################################################################
|
||||
# This file is used to re-orangize all checkpoints (created by main-tss.py) #
|
||||
# into a single benchmark file. Besides, for each trial, we will merge the #
|
||||
# information of all its trials into a single file. #
|
||||
# #
|
||||
# Usage: #
|
||||
# python exps/NATS-Bench/tss-collect-patcher.py #
|
||||
##############################################################################
|
||||
import os, re, sys, time, shutil, random, argparse, collections
|
||||
import numpy as np
|
||||
from copy import deepcopy
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
from pathlib import Path
|
||||
from collections import defaultdict, OrderedDict
|
||||
from typing import Dict, Any, Text, List
|
||||
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
||||
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
||||
from log_utils import AverageMeter, time_string, convert_secs2time
|
||||
from config_utils import load_config, dict2config
|
||||
from datasets import get_datasets
|
||||
from models import CellStructure, get_cell_based_tiny_net, get_search_spaces
|
||||
from nats_bench import pickle_save, pickle_load, ArchResults, ResultsCount
|
||||
from procedures import bench_pure_evaluate as pure_evaluate, get_nas_bench_loaders
|
||||
from utils import get_md5_file
|
||||
from nas_201_api import NASBench201API
|
||||
|
||||
|
||||
NATS_TSS_BASE_NAME = 'NATS-tss-v1_0' # 2020.08.28
|
||||
|
||||
|
||||
def simplify(save_dir, save_name, nets, total, sup_config):
|
||||
hps, seeds = ['12', '200'], set()
|
||||
for hp in hps:
|
||||
sub_save_dir = save_dir / 'raw-data-{:}'.format(hp)
|
||||
ckps = sorted(list(sub_save_dir.glob('arch-*-seed-*.pth')))
|
||||
seed2names = defaultdict(list)
|
||||
for ckp in ckps:
|
||||
parts = re.split('-|\.', ckp.name)
|
||||
seed2names[parts[3]].append(ckp.name)
|
||||
print('DIR : {:}'.format(sub_save_dir))
|
||||
nums = []
|
||||
for seed, xlist in seed2names.items():
|
||||
seeds.add(seed)
|
||||
nums.append(len(xlist))
|
||||
print(' [seed={:}] there are {:} checkpoints.'.format(seed, len(xlist)))
|
||||
assert len(nets) == total == max(nums), 'there are some missed files : {:} vs {:}'.format(max(nums), total)
|
||||
print('{:} start simplify the checkpoint.'.format(time_string()))
|
||||
|
||||
datasets = ('cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120')
|
||||
|
||||
# Create the directory to save the processed data
|
||||
# full_save_dir contains all benchmark files with trained weights.
|
||||
# simplify_save_dir contains all benchmark files without trained weights.
|
||||
full_save_dir = save_dir / (save_name + '-FULL')
|
||||
simple_save_dir = save_dir / (save_name + '-SIMPLIFY')
|
||||
full_save_dir.mkdir(parents=True, exist_ok=True)
|
||||
simple_save_dir.mkdir(parents=True, exist_ok=True)
|
||||
# all data in memory
|
||||
arch2infos, evaluated_indexes = dict(), set()
|
||||
end_time, arch_time = time.time(), AverageMeter()
|
||||
# save the meta information
|
||||
for index in tqdm(range(total)):
|
||||
arch_str = nets[index]
|
||||
hp2info = OrderedDict()
|
||||
|
||||
simple_save_path = simple_save_dir / '{:06d}.pickle'.format(index)
|
||||
|
||||
arch2infos[index] = pickle_load(simple_save_path)
|
||||
evaluated_indexes.add(index)
|
||||
|
||||
# measure elapsed time
|
||||
arch_time.update(time.time() - end_time)
|
||||
end_time = time.time()
|
||||
need_time = '{:}'.format(convert_secs2time(arch_time.avg * (total-index-1), True))
|
||||
# print('{:} {:06d}/{:06d} : still need {:}'.format(time_string(), index, total, need_time))
|
||||
print('{:} {:} done.'.format(time_string(), save_name))
|
||||
final_infos = {'meta_archs' : nets,
|
||||
'total_archs': total,
|
||||
'arch2infos' : arch2infos,
|
||||
'evaluated_indexes': evaluated_indexes}
|
||||
save_file_name = save_dir / '{:}.pickle'.format(save_name)
|
||||
pickle_save(final_infos, str(save_file_name))
|
||||
# move the benchmark file to a new path
|
||||
hd5sum = get_md5_file(str(save_file_name) + '.pbz2')
|
||||
hd5_file_name = save_dir / '{:}-{:}.pickle.pbz2'.format(NATS_TSS_BASE_NAME, hd5sum)
|
||||
shutil.move(str(save_file_name) + '.pbz2', hd5_file_name)
|
||||
print('Save {:} / {:} architecture results into {:} -> {:}.'.format(len(evaluated_indexes), total, save_file_name, hd5_file_name))
|
||||
# move the directory to a new path
|
||||
hd5_full_save_dir = save_dir / '{:}-{:}-full'.format(NATS_TSS_BASE_NAME, hd5sum)
|
||||
hd5_simple_save_dir = save_dir / '{:}-{:}-simple'.format(NATS_TSS_BASE_NAME, hd5sum)
|
||||
shutil.move(full_save_dir, hd5_full_save_dir)
|
||||
shutil.move(simple_save_dir, hd5_simple_save_dir)
|
||||
|
||||
|
||||
def traverse_net(max_node):
|
||||
aa_nas_bench_ss = get_search_spaces('cell', 'nats-bench')
|
||||
archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False)
|
||||
print ('There are {:} archs vs {:}.'.format(len(archs), len(aa_nas_bench_ss) ** ((max_node-1)*max_node/2)))
|
||||
|
||||
random.seed( 88 ) # please do not change this line for reproducibility
|
||||
random.shuffle( archs )
|
||||
assert archs[0 ].tostr() == '|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|', 'please check the 0-th architecture : {:}'.format(archs[0])
|
||||
assert archs[9 ].tostr() == '|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|', 'please check the 9-th architecture : {:}'.format(archs[9])
|
||||
assert archs[123].tostr() == '|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|', 'please check the 123-th architecture : {:}'.format(archs[123])
|
||||
return [x.tostr() for x in archs]
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
parser = argparse.ArgumentParser(description='NATS-Bench (topology search space)', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument('--base_save_dir', type=str, default='./output/NATS-Bench-topology', help='The base-name of folder to save checkpoints and log.')
|
||||
parser.add_argument('--max_node' , type=int, default=4, help='The maximum node in a cell.')
|
||||
parser.add_argument('--channel' , type=int, default=16, help='The number of channels.')
|
||||
parser.add_argument('--num_cells' , type=int, default=5, help='The number of cells in one stage.')
|
||||
parser.add_argument('--check_N' , type=int, default=15625, help='For safety.')
|
||||
parser.add_argument('--save_name' , type=str, default='process', help='The save directory.')
|
||||
args = parser.parse_args()
|
||||
|
||||
nets = traverse_net(args.max_node)
|
||||
if len(nets) != args.check_N:
|
||||
raise ValueError('Pre-num-check failed : {:} vs {:}'.format(len(nets), args.check_N))
|
||||
|
||||
save_dir = Path(args.base_save_dir)
|
||||
simplify(save_dir, args.save_name, nets, args.check_N, {'name': 'infer.tiny', 'channel': args.channel, 'num_cells': args.num_cells})
|
@@ -10,7 +10,7 @@
|
||||
# Usage: #
|
||||
# python exps/NATS-Bench/tss-collect.py #
|
||||
##############################################################################
|
||||
import os, re, sys, time, random, argparse, collections
|
||||
import os, re, sys, time, shutil, random, argparse, collections
|
||||
import numpy as np
|
||||
from copy import deepcopy
|
||||
import torch
|
||||
@@ -26,6 +26,7 @@ from datasets import get_datasets
|
||||
from models import CellStructure, get_cell_based_tiny_net, get_search_spaces
|
||||
from nats_bench import pickle_save, pickle_load, ArchResults, ResultsCount
|
||||
from procedures import bench_pure_evaluate as pure_evaluate, get_nas_bench_loaders
|
||||
from utils import get_md5_file
|
||||
from nas_201_api import NASBench201API
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user