Add SuperSimpleNorm and update synthetic env
This commit is contained in:
53
tests/test_super_norm.py
Normal file
53
tests/test_super_norm.py
Normal file
@@ -0,0 +1,53 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
|
||||
#####################################################
|
||||
# pytest ./tests/test_super_norm.py -s #
|
||||
#####################################################
|
||||
import sys, random
|
||||
import unittest
|
||||
import pytest
|
||||
from pathlib import Path
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / "lib").resolve()
|
||||
print("library path: {:}".format(lib_dir))
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
|
||||
import torch
|
||||
from xlayers import super_core
|
||||
import spaces
|
||||
|
||||
|
||||
class TestSuperSimpleNorm(unittest.TestCase):
|
||||
"""Test the super simple norm."""
|
||||
|
||||
def test_super_simple_norm(self):
|
||||
out_features = spaces.Categorical(12, 24, 36)
|
||||
bias = spaces.Categorical(True, False)
|
||||
model = super_core.SuperSequential(
|
||||
super_core.SuperSimpleNorm(5, 0.5),
|
||||
super_core.SuperLinear(10, out_features, bias=bias),
|
||||
)
|
||||
print("The simple super module is:\n{:}".format(model))
|
||||
model.apply_verbose(True)
|
||||
|
||||
print(model.super_run_type)
|
||||
self.assertTrue(model[1].bias)
|
||||
|
||||
inputs = torch.rand(20, 10)
|
||||
print("Input shape: {:}".format(inputs.shape))
|
||||
outputs = model(inputs)
|
||||
self.assertEqual(tuple(outputs.shape), (20, 36))
|
||||
|
||||
abstract_space = model.abstract_search_space
|
||||
abstract_space.clean_last()
|
||||
abstract_child = abstract_space.random()
|
||||
print("The abstract searc space:\n{:}".format(abstract_space))
|
||||
print("The abstract child program:\n{:}".format(abstract_child))
|
||||
|
||||
model.set_super_run_type(super_core.SuperRunMode.Candidate)
|
||||
model.apply_candidate(abstract_child)
|
||||
|
||||
output_shape = (20, abstract_child["1"]["_out_features"].value)
|
||||
outputs = model(inputs)
|
||||
self.assertEqual(tuple(outputs.shape), output_shape)
|
Reference in New Issue
Block a user