Add SuperSimpleNorm and update synthetic env
This commit is contained in:
@@ -72,3 +72,17 @@ def test_super_sequential(batch, seq_dim, input_dim, order):
|
||||
out3_dim.abstract(reuse_last=True).random(reuse_last=True).value,
|
||||
)
|
||||
assert tuple(outputs.shape) == output_shape
|
||||
|
||||
|
||||
def test_super_sequential_v1():
|
||||
model = super_core.SuperSequential(
|
||||
super_core.SuperSimpleNorm(1, 1),
|
||||
torch.nn.ReLU(),
|
||||
super_core.SuperLinear(10, 10),
|
||||
)
|
||||
inputs = torch.rand(10, 10)
|
||||
print(model)
|
||||
outputs = model(inputs)
|
||||
|
||||
abstract_search_space = model.abstract_search_space
|
||||
print(abstract_search_space)
|
||||
|
Reference in New Issue
Block a user