Update codes
This commit is contained in:
343
exps/GeMOSA/main.py
Normal file
343
exps/GeMOSA/main.py
Normal file
@@ -0,0 +1,343 @@
|
||||
#####################################################
|
||||
# Learning to Generate Model One Step Ahead #
|
||||
#####################################################
|
||||
# python exps/GeMOSA/lfna.py --env_version v1 --workers 0
|
||||
# python exps/GeMOSA/lfna.py --env_version v1 --device cuda --lr 0.001
|
||||
# python exps/GeMOSA/main.py --env_version v1 --device cuda --lr 0.002 --seq_length 16 --meta_batch 128
|
||||
# python exps/GeMOSA/lfna.py --env_version v1 --device cuda --lr 0.002 --seq_length 24 --time_dim 32 --meta_batch 128
|
||||
#####################################################
|
||||
import sys, time, copy, torch, random, argparse
|
||||
from tqdm import tqdm
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
from torch.nn import functional as F
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / "..").resolve()
|
||||
print("LIB-DIR: {:}".format(lib_dir))
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
|
||||
from xautodl.procedures import (
|
||||
prepare_seed,
|
||||
prepare_logger,
|
||||
save_checkpoint,
|
||||
copy_checkpoint,
|
||||
)
|
||||
from xautodl.log_utils import time_string
|
||||
from xautodl.log_utils import AverageMeter, convert_secs2time
|
||||
|
||||
from xautodl.utils import split_str2indexes
|
||||
|
||||
from xautodl.procedures.advanced_main import basic_train_fn, basic_eval_fn
|
||||
from xautodl.procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
|
||||
from xautodl.datasets.synthetic_core import get_synthetic_env
|
||||
from xautodl.models.xcore import get_model
|
||||
from xautodl.xlayers import super_core, trunc_normal_
|
||||
|
||||
from lfna_utils import lfna_setup, train_model, TimeData
|
||||
from lfna_meta_model import MetaModelV1
|
||||
|
||||
|
||||
def online_evaluate(env, meta_model, base_model, criterion, args, logger, save=False):
|
||||
logger.log("Online evaluate: {:}".format(env))
|
||||
loss_meter = AverageMeter()
|
||||
w_containers = dict()
|
||||
for idx, (future_time, (future_x, future_y)) in enumerate(env):
|
||||
with torch.no_grad():
|
||||
meta_model.eval()
|
||||
base_model.eval()
|
||||
_, [future_container], time_embeds = meta_model(
|
||||
future_time.to(args.device).view(1, 1), None, False
|
||||
)
|
||||
if save:
|
||||
w_containers[idx] = future_container.no_grad_clone()
|
||||
future_x, future_y = future_x.to(args.device), future_y.to(args.device)
|
||||
future_y_hat = base_model.forward_with_container(future_x, future_container)
|
||||
future_loss = criterion(future_y_hat, future_y)
|
||||
loss_meter.update(future_loss.item())
|
||||
refine, post_refine_loss = meta_model.adapt(
|
||||
base_model,
|
||||
criterion,
|
||||
future_time.item(),
|
||||
future_x,
|
||||
future_y,
|
||||
args.refine_lr,
|
||||
args.refine_epochs,
|
||||
{"param": time_embeds, "loss": future_loss.item()},
|
||||
)
|
||||
logger.log(
|
||||
"[ONLINE] [{:03d}/{:03d}] loss={:.4f}".format(
|
||||
idx, len(env), future_loss.item()
|
||||
)
|
||||
+ ", post-loss={:.4f}".format(post_refine_loss if refine else -1)
|
||||
)
|
||||
meta_model.clear_fixed()
|
||||
meta_model.clear_learnt()
|
||||
return w_containers, loss_meter
|
||||
|
||||
|
||||
def meta_train_procedure(base_model, meta_model, criterion, xenv, args, logger):
|
||||
base_model.train()
|
||||
meta_model.train()
|
||||
optimizer = torch.optim.Adam(
|
||||
meta_model.get_parameters(True, True, True),
|
||||
lr=args.lr,
|
||||
weight_decay=args.weight_decay,
|
||||
amsgrad=True,
|
||||
)
|
||||
logger.log("Pre-train the meta-model")
|
||||
logger.log("Using the optimizer: {:}".format(optimizer))
|
||||
|
||||
meta_model.set_best_dir(logger.path(None) / "ckps-pretrain-v2")
|
||||
final_best_name = "final-pretrain-{:}.pth".format(args.rand_seed)
|
||||
if meta_model.has_best(final_best_name):
|
||||
meta_model.load_best(final_best_name)
|
||||
logger.log("Directly load the best model from {:}".format(final_best_name))
|
||||
return
|
||||
|
||||
total_indexes = list(range(meta_model.meta_length))
|
||||
meta_model.set_best_name("pretrain-{:}.pth".format(args.rand_seed))
|
||||
last_success_epoch, early_stop_thresh = 0, args.pretrain_early_stop_thresh
|
||||
per_epoch_time, start_time = AverageMeter(), time.time()
|
||||
device = args.device
|
||||
for iepoch in range(args.epochs):
|
||||
left_time = "Time Left: {:}".format(
|
||||
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
|
||||
)
|
||||
optimizer.zero_grad()
|
||||
|
||||
generated_time_embeds = meta_model(meta_model.meta_timestamps, None, True)
|
||||
|
||||
batch_indexes = random.choices(total_indexes, k=args.meta_batch)
|
||||
|
||||
raw_time_steps = meta_model.meta_timestamps[batch_indexes]
|
||||
|
||||
regularization_loss = F.l1_loss(
|
||||
generated_time_embeds, meta_model.super_meta_embed, reduction="mean"
|
||||
)
|
||||
# future loss
|
||||
total_future_losses, total_present_losses = [], []
|
||||
_, future_containers, _ = meta_model(
|
||||
None, generated_time_embeds[batch_indexes], False
|
||||
)
|
||||
_, present_containers, _ = meta_model(
|
||||
None, meta_model.super_meta_embed[batch_indexes], False
|
||||
)
|
||||
for ibatch, time_step in enumerate(raw_time_steps.cpu().tolist()):
|
||||
_, (inputs, targets) = xenv(time_step)
|
||||
inputs, targets = inputs.to(device), targets.to(device)
|
||||
|
||||
predictions = base_model.forward_with_container(
|
||||
inputs, future_containers[ibatch]
|
||||
)
|
||||
total_future_losses.append(criterion(predictions, targets))
|
||||
|
||||
predictions = base_model.forward_with_container(
|
||||
inputs, present_containers[ibatch]
|
||||
)
|
||||
total_present_losses.append(criterion(predictions, targets))
|
||||
|
||||
with torch.no_grad():
|
||||
meta_std = torch.stack(total_future_losses).std().item()
|
||||
loss_future = torch.stack(total_future_losses).mean()
|
||||
loss_present = torch.stack(total_present_losses).mean()
|
||||
total_loss = loss_future + loss_present + regularization_loss
|
||||
total_loss.backward()
|
||||
optimizer.step()
|
||||
# success
|
||||
success, best_score = meta_model.save_best(-total_loss.item())
|
||||
logger.log(
|
||||
"{:} [META {:04d}/{:}] loss : {:.4f} +- {:.4f} = {:.4f} + {:.4f} + {:.4f}".format(
|
||||
time_string(),
|
||||
iepoch,
|
||||
args.epochs,
|
||||
total_loss.item(),
|
||||
meta_std,
|
||||
loss_future.item(),
|
||||
loss_present.item(),
|
||||
regularization_loss.item(),
|
||||
)
|
||||
+ ", batch={:}".format(len(total_future_losses))
|
||||
+ ", success={:}, best={:.4f}".format(success, -best_score)
|
||||
+ ", LS={:}/{:}".format(iepoch - last_success_epoch, early_stop_thresh)
|
||||
+ ", {:}".format(left_time)
|
||||
)
|
||||
if success:
|
||||
last_success_epoch = iepoch
|
||||
if iepoch - last_success_epoch >= early_stop_thresh:
|
||||
logger.log("Early stop the pre-training at {:}".format(iepoch))
|
||||
break
|
||||
per_epoch_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
meta_model.load_best()
|
||||
# save to the final model
|
||||
meta_model.set_best_name(final_best_name)
|
||||
success, _ = meta_model.save_best(best_score + 1e-6)
|
||||
assert success
|
||||
logger.log("Save the best model into {:}".format(final_best_name))
|
||||
|
||||
|
||||
def main(args):
|
||||
logger, model_kwargs = lfna_setup(args)
|
||||
train_env = get_synthetic_env(mode="train", version=args.env_version)
|
||||
valid_env = get_synthetic_env(mode="valid", version=args.env_version)
|
||||
trainval_env = get_synthetic_env(mode="trainval", version=args.env_version)
|
||||
all_env = get_synthetic_env(mode=None, version=args.env_version)
|
||||
logger.log("The training enviornment: {:}".format(train_env))
|
||||
logger.log("The validation enviornment: {:}".format(valid_env))
|
||||
logger.log("The trainval enviornment: {:}".format(trainval_env))
|
||||
logger.log("The total enviornment: {:}".format(all_env))
|
||||
|
||||
base_model = get_model(**model_kwargs)
|
||||
base_model = base_model.to(args.device)
|
||||
criterion = torch.nn.MSELoss()
|
||||
|
||||
shape_container = base_model.get_w_container().to_shape_container()
|
||||
|
||||
# pre-train the hypernetwork
|
||||
timestamps = trainval_env.get_timestamp(None)
|
||||
meta_model = MetaModelV1(
|
||||
shape_container,
|
||||
args.layer_dim,
|
||||
args.time_dim,
|
||||
timestamps,
|
||||
seq_length=args.seq_length,
|
||||
interval=trainval_env.time_interval,
|
||||
)
|
||||
meta_model = meta_model.to(args.device)
|
||||
|
||||
logger.log("The base-model has {:} weights.".format(base_model.numel()))
|
||||
logger.log("The meta-model has {:} weights.".format(meta_model.numel()))
|
||||
logger.log("The base-model is\n{:}".format(base_model))
|
||||
logger.log("The meta-model is\n{:}".format(meta_model))
|
||||
|
||||
meta_train_procedure(base_model, meta_model, criterion, trainval_env, args, logger)
|
||||
|
||||
# try to evaluate once
|
||||
# online_evaluate(train_env, meta_model, base_model, criterion, args, logger)
|
||||
# online_evaluate(valid_env, meta_model, base_model, criterion, args, logger)
|
||||
w_containers, loss_meter = online_evaluate(
|
||||
all_env, meta_model, base_model, criterion, args, logger, True
|
||||
)
|
||||
logger.log("In this enviornment, the loss-meter is {:}".format(loss_meter))
|
||||
|
||||
save_checkpoint(
|
||||
{"w_containers": w_containers},
|
||||
logger.path(None) / "final-ckp.pth",
|
||||
logger,
|
||||
)
|
||||
|
||||
logger.log("-" * 200 + "\n")
|
||||
logger.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(".")
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
default="./outputs/lfna-synthetic/lfna-battle",
|
||||
help="The checkpoint directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--env_version",
|
||||
type=str,
|
||||
required=True,
|
||||
help="The synthetic enviornment version.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hidden_dim",
|
||||
type=int,
|
||||
default=16,
|
||||
help="The hidden dimension.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--layer_dim",
|
||||
type=int,
|
||||
default=16,
|
||||
help="The layer chunk dimension.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--time_dim",
|
||||
type=int,
|
||||
default=16,
|
||||
help="The timestamp dimension.",
|
||||
)
|
||||
#####
|
||||
parser.add_argument(
|
||||
"--lr",
|
||||
type=float,
|
||||
default=0.002,
|
||||
help="The initial learning rate for the optimizer (default is Adam)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--weight_decay",
|
||||
type=float,
|
||||
default=0.00001,
|
||||
help="The weight decay for the optimizer (default is Adam)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--meta_batch",
|
||||
type=int,
|
||||
default=64,
|
||||
help="The batch size for the meta-model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--sampler_enlarge",
|
||||
type=int,
|
||||
default=5,
|
||||
help="Enlarge the #iterations for an epoch",
|
||||
)
|
||||
parser.add_argument("--epochs", type=int, default=10000, help="The total #epochs.")
|
||||
parser.add_argument(
|
||||
"--refine_lr",
|
||||
type=float,
|
||||
default=0.001,
|
||||
help="The learning rate for the optimizer, during refine",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--refine_epochs", type=int, default=150, help="The final refine #epochs."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--early_stop_thresh",
|
||||
type=int,
|
||||
default=20,
|
||||
help="The #epochs for early stop.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--pretrain_early_stop_thresh",
|
||||
type=int,
|
||||
default=300,
|
||||
help="The #epochs for early stop.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--seq_length", type=int, default=10, help="The sequence length."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--workers", type=int, default=4, help="The number of workers in parallel."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default="cpu",
|
||||
help="",
|
||||
)
|
||||
# Random Seed
|
||||
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
||||
args = parser.parse_args()
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
assert args.save_dir is not None, "The save dir argument can not be None"
|
||||
args.save_dir = "{:}-bs{:}-d{:}_{:}_{:}-s{:}-lr{:}-wd{:}-e{:}-env{:}".format(
|
||||
args.save_dir,
|
||||
args.meta_batch,
|
||||
args.hidden_dim,
|
||||
args.layer_dim,
|
||||
args.time_dim,
|
||||
args.seq_length,
|
||||
args.lr,
|
||||
args.weight_decay,
|
||||
args.epochs,
|
||||
args.env_version,
|
||||
)
|
||||
main(args)
|
Reference in New Issue
Block a user