Update codes
This commit is contained in:
206
exps/GeMOSA/basic-his.py
Normal file
206
exps/GeMOSA/basic-his.py
Normal file
@@ -0,0 +1,206 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
# python exps/LFNA/basic-his.py --srange 1-999 --env_version v1 --hidden_dim 16
|
||||
#####################################################
|
||||
import sys, time, copy, torch, random, argparse
|
||||
from tqdm import tqdm
|
||||
from copy import deepcopy
|
||||
|
||||
from xautodl.procedures import (
|
||||
prepare_seed,
|
||||
prepare_logger,
|
||||
save_checkpoint,
|
||||
copy_checkpoint,
|
||||
)
|
||||
from xautodl.log_utils import time_string
|
||||
from xautodl.log_utils import AverageMeter, convert_secs2time
|
||||
|
||||
from xautodl.utils import split_str2indexes
|
||||
|
||||
from xautodl.procedures.advanced_main import basic_train_fn, basic_eval_fn
|
||||
from xautodl.procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
|
||||
from xautodl.datasets.synthetic_core import get_synthetic_env
|
||||
from xautodl.models.xcore import get_model
|
||||
|
||||
|
||||
from lfna_utils import lfna_setup
|
||||
|
||||
|
||||
def subsample(historical_x, historical_y, maxn=10000):
|
||||
total = historical_x.size(0)
|
||||
if total <= maxn:
|
||||
return historical_x, historical_y
|
||||
else:
|
||||
indexes = torch.randint(low=0, high=total, size=[maxn])
|
||||
return historical_x[indexes], historical_y[indexes]
|
||||
|
||||
|
||||
def main(args):
|
||||
logger, env_info, model_kwargs = lfna_setup(args)
|
||||
|
||||
# check indexes to be evaluated
|
||||
to_evaluate_indexes = split_str2indexes(args.srange, env_info["total"], None)
|
||||
logger.log(
|
||||
"Evaluate {:}, which has {:} timestamps in total.".format(
|
||||
args.srange, len(to_evaluate_indexes)
|
||||
)
|
||||
)
|
||||
|
||||
w_container_per_epoch = dict()
|
||||
|
||||
per_timestamp_time, start_time = AverageMeter(), time.time()
|
||||
for i, idx in enumerate(to_evaluate_indexes):
|
||||
|
||||
need_time = "Time Left: {:}".format(
|
||||
convert_secs2time(
|
||||
per_timestamp_time.avg * (len(to_evaluate_indexes) - i), True
|
||||
)
|
||||
)
|
||||
logger.log(
|
||||
"[{:}]".format(time_string())
|
||||
+ " [{:04d}/{:04d}][{:04d}]".format(i, len(to_evaluate_indexes), idx)
|
||||
+ " "
|
||||
+ need_time
|
||||
)
|
||||
# train the same data
|
||||
assert idx != 0
|
||||
historical_x, historical_y = [], []
|
||||
for past_i in range(idx):
|
||||
historical_x.append(env_info["{:}-x".format(past_i)])
|
||||
historical_y.append(env_info["{:}-y".format(past_i)])
|
||||
historical_x, historical_y = torch.cat(historical_x), torch.cat(historical_y)
|
||||
historical_x, historical_y = subsample(historical_x, historical_y)
|
||||
# build model
|
||||
model = get_model(dict(model_type="simple_mlp"), **model_kwargs)
|
||||
# build optimizer
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, amsgrad=True)
|
||||
criterion = torch.nn.MSELoss()
|
||||
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
||||
optimizer,
|
||||
milestones=[
|
||||
int(args.epochs * 0.25),
|
||||
int(args.epochs * 0.5),
|
||||
int(args.epochs * 0.75),
|
||||
],
|
||||
gamma=0.3,
|
||||
)
|
||||
train_metric = MSEMetric()
|
||||
best_loss, best_param = None, None
|
||||
for _iepoch in range(args.epochs):
|
||||
preds = model(historical_x)
|
||||
optimizer.zero_grad()
|
||||
loss = criterion(preds, historical_y)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
# save best
|
||||
if best_loss is None or best_loss > loss.item():
|
||||
best_loss = loss.item()
|
||||
best_param = copy.deepcopy(model.state_dict())
|
||||
model.load_state_dict(best_param)
|
||||
with torch.no_grad():
|
||||
train_metric(preds, historical_y)
|
||||
train_results = train_metric.get_info()
|
||||
|
||||
metric = ComposeMetric(MSEMetric(), SaveMetric())
|
||||
eval_dataset = torch.utils.data.TensorDataset(
|
||||
env_info["{:}-x".format(idx)], env_info["{:}-y".format(idx)]
|
||||
)
|
||||
eval_loader = torch.utils.data.DataLoader(
|
||||
eval_dataset, batch_size=args.batch_size, shuffle=False, num_workers=0
|
||||
)
|
||||
results = basic_eval_fn(eval_loader, model, metric, logger)
|
||||
log_str = (
|
||||
"[{:}]".format(time_string())
|
||||
+ " [{:04d}/{:04d}]".format(idx, env_info["total"])
|
||||
+ " train-mse: {:.5f}, eval-mse: {:.5f}".format(
|
||||
train_results["mse"], results["mse"]
|
||||
)
|
||||
)
|
||||
logger.log(log_str)
|
||||
|
||||
save_path = logger.path(None) / "{:04d}-{:04d}.pth".format(
|
||||
idx, env_info["total"]
|
||||
)
|
||||
w_container_per_epoch[idx] = model.get_w_container().no_grad_clone()
|
||||
save_checkpoint(
|
||||
{
|
||||
"model_state_dict": model.state_dict(),
|
||||
"model": model,
|
||||
"index": idx,
|
||||
"timestamp": env_info["{:}-timestamp".format(idx)],
|
||||
},
|
||||
save_path,
|
||||
logger,
|
||||
)
|
||||
logger.log("")
|
||||
per_timestamp_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
|
||||
save_checkpoint(
|
||||
{"w_container_per_epoch": w_container_per_epoch},
|
||||
logger.path(None) / "final-ckp.pth",
|
||||
logger,
|
||||
)
|
||||
logger.log("-" * 200 + "\n")
|
||||
logger.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser("Use all the past data to train.")
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
default="./outputs/lfna-synthetic/use-all-past-data",
|
||||
help="The checkpoint directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--env_version",
|
||||
type=str,
|
||||
required=True,
|
||||
help="The synthetic enviornment version.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hidden_dim",
|
||||
type=int,
|
||||
required=True,
|
||||
help="The hidden dimension.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--init_lr",
|
||||
type=float,
|
||||
default=0.1,
|
||||
help="The initial learning rate for the optimizer (default is Adam)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch_size",
|
||||
type=int,
|
||||
default=512,
|
||||
help="The batch size",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--epochs",
|
||||
type=int,
|
||||
default=1000,
|
||||
help="The total number of epochs.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--srange", type=str, required=True, help="The range of models to be evaluated"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--workers",
|
||||
type=int,
|
||||
default=4,
|
||||
help="The number of data loading workers (default: 4)",
|
||||
)
|
||||
# Random Seed
|
||||
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
||||
args = parser.parse_args()
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
assert args.save_dir is not None, "The save dir argument can not be None"
|
||||
args.save_dir = "{:}-{:}-d{:}".format(
|
||||
args.save_dir, args.env_version, args.hidden_dim
|
||||
)
|
||||
main(args)
|
271
exps/GeMOSA/basic-maml.py
Normal file
271
exps/GeMOSA/basic-maml.py
Normal file
@@ -0,0 +1,271 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
# python exps/LFNA/basic-maml.py --env_version v1 --inner_step 5
|
||||
# python exps/LFNA/basic-maml.py --env_version v2
|
||||
#####################################################
|
||||
import sys, time, copy, torch, random, argparse
|
||||
from tqdm import tqdm
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint
|
||||
from log_utils import time_string
|
||||
from log_utils import AverageMeter, convert_secs2time
|
||||
|
||||
from utils import split_str2indexes
|
||||
|
||||
from procedures.advanced_main import basic_train_fn, basic_eval_fn
|
||||
from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
|
||||
from datasets.synthetic_core import get_synthetic_env, EnvSampler
|
||||
from models.xcore import get_model
|
||||
from xlayers import super_core
|
||||
|
||||
from lfna_utils import lfna_setup, TimeData
|
||||
|
||||
|
||||
class MAML:
|
||||
"""A LFNA meta-model that uses the MLP as delta-net."""
|
||||
|
||||
def __init__(
|
||||
self, network, criterion, epochs, meta_lr, inner_lr=0.01, inner_step=1
|
||||
):
|
||||
self.criterion = criterion
|
||||
# self.container = container
|
||||
self.network = network
|
||||
self.meta_optimizer = torch.optim.Adam(
|
||||
self.network.parameters(), lr=meta_lr, amsgrad=True
|
||||
)
|
||||
self.meta_lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
||||
self.meta_optimizer,
|
||||
milestones=[
|
||||
int(epochs * 0.8),
|
||||
int(epochs * 0.9),
|
||||
],
|
||||
gamma=0.1,
|
||||
)
|
||||
self.inner_lr = inner_lr
|
||||
self.inner_step = inner_step
|
||||
self._best_info = dict(state_dict=None, iepoch=None, score=None)
|
||||
print("There are {:} weights.".format(self.network.get_w_container().numel()))
|
||||
|
||||
def adapt(self, dataset):
|
||||
# create a container for the future timestamp
|
||||
container = self.network.get_w_container()
|
||||
|
||||
for k in range(0, self.inner_step):
|
||||
y_hat = self.network.forward_with_container(dataset.x, container)
|
||||
loss = self.criterion(y_hat, dataset.y)
|
||||
grads = torch.autograd.grad(loss, container.parameters())
|
||||
container = container.additive([-self.inner_lr * grad for grad in grads])
|
||||
return container
|
||||
|
||||
def predict(self, x, container=None):
|
||||
if container is not None:
|
||||
y_hat = self.network.forward_with_container(x, container)
|
||||
else:
|
||||
y_hat = self.network(x)
|
||||
return y_hat
|
||||
|
||||
def step(self):
|
||||
torch.nn.utils.clip_grad_norm_(self.network.parameters(), 1.0)
|
||||
self.meta_optimizer.step()
|
||||
self.meta_lr_scheduler.step()
|
||||
|
||||
def zero_grad(self):
|
||||
self.meta_optimizer.zero_grad()
|
||||
|
||||
def load_state_dict(self, state_dict):
|
||||
self.criterion.load_state_dict(state_dict["criterion"])
|
||||
self.network.load_state_dict(state_dict["network"])
|
||||
self.meta_optimizer.load_state_dict(state_dict["meta_optimizer"])
|
||||
self.meta_lr_scheduler.load_state_dict(state_dict["meta_lr_scheduler"])
|
||||
|
||||
def state_dict(self):
|
||||
state_dict = dict()
|
||||
state_dict["criterion"] = self.criterion.state_dict()
|
||||
state_dict["network"] = self.network.state_dict()
|
||||
state_dict["meta_optimizer"] = self.meta_optimizer.state_dict()
|
||||
state_dict["meta_lr_scheduler"] = self.meta_lr_scheduler.state_dict()
|
||||
return state_dict
|
||||
|
||||
def save_best(self, score):
|
||||
success, best_score = self.network.save_best(score)
|
||||
return success, best_score
|
||||
|
||||
def load_best(self):
|
||||
self.network.load_best()
|
||||
|
||||
|
||||
def main(args):
|
||||
logger, env_info, model_kwargs = lfna_setup(args)
|
||||
model = get_model(**model_kwargs)
|
||||
|
||||
dynamic_env = get_synthetic_env(mode="train", version=args.env_version)
|
||||
|
||||
criterion = torch.nn.MSELoss()
|
||||
|
||||
maml = MAML(
|
||||
model, criterion, args.epochs, args.meta_lr, args.inner_lr, args.inner_step
|
||||
)
|
||||
|
||||
# meta-training
|
||||
last_success_epoch = 0
|
||||
per_epoch_time, start_time = AverageMeter(), time.time()
|
||||
for iepoch in range(args.epochs):
|
||||
need_time = "Time Left: {:}".format(
|
||||
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
|
||||
)
|
||||
head_str = (
|
||||
"[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs)
|
||||
+ need_time
|
||||
)
|
||||
|
||||
maml.zero_grad()
|
||||
meta_losses = []
|
||||
for ibatch in range(args.meta_batch):
|
||||
future_timestamp = dynamic_env.random_timestamp()
|
||||
_, (future_x, future_y) = dynamic_env(future_timestamp)
|
||||
past_timestamp = (
|
||||
future_timestamp - args.prev_time * dynamic_env.timestamp_interval
|
||||
)
|
||||
_, (past_x, past_y) = dynamic_env(past_timestamp)
|
||||
|
||||
future_container = maml.adapt(TimeData(past_timestamp, past_x, past_y))
|
||||
future_y_hat = maml.predict(future_x, future_container)
|
||||
future_loss = maml.criterion(future_y_hat, future_y)
|
||||
meta_losses.append(future_loss)
|
||||
meta_loss = torch.stack(meta_losses).mean()
|
||||
meta_loss.backward()
|
||||
maml.step()
|
||||
|
||||
logger.log(head_str + " meta-loss: {:.4f}".format(meta_loss.item()))
|
||||
success, best_score = maml.save_best(-meta_loss.item())
|
||||
if success:
|
||||
logger.log("Achieve the best with best_score = {:.3f}".format(best_score))
|
||||
save_checkpoint(maml.state_dict(), logger.path("model"), logger)
|
||||
last_success_epoch = iepoch
|
||||
if iepoch - last_success_epoch >= args.early_stop_thresh:
|
||||
logger.log("Early stop at {:}".format(iepoch))
|
||||
break
|
||||
|
||||
per_epoch_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
|
||||
# meta-test
|
||||
maml.load_best()
|
||||
eval_env = env_info["dynamic_env"]
|
||||
assert eval_env.timestamp_interval == dynamic_env.timestamp_interval
|
||||
w_container_per_epoch = dict()
|
||||
for idx in range(args.prev_time, len(eval_env)):
|
||||
future_timestamp, (future_x, future_y) = eval_env[idx]
|
||||
past_timestamp = (
|
||||
future_timestamp.item() - args.prev_time * eval_env.timestamp_interval
|
||||
)
|
||||
_, (past_x, past_y) = eval_env(past_timestamp)
|
||||
future_container = maml.adapt(TimeData(past_timestamp, past_x, past_y))
|
||||
w_container_per_epoch[idx] = future_container.no_grad_clone()
|
||||
with torch.no_grad():
|
||||
future_y_hat = maml.predict(future_x, w_container_per_epoch[idx])
|
||||
future_loss = maml.criterion(future_y_hat, future_y)
|
||||
logger.log("meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item()))
|
||||
save_checkpoint(
|
||||
{"w_container_per_epoch": w_container_per_epoch},
|
||||
logger.path(None) / "final-ckp.pth",
|
||||
logger,
|
||||
)
|
||||
|
||||
logger.log("-" * 200 + "\n")
|
||||
logger.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser("Use the data in the past.")
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
default="./outputs/lfna-synthetic/use-maml",
|
||||
help="The checkpoint directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--env_version",
|
||||
type=str,
|
||||
required=True,
|
||||
help="The synthetic enviornment version.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hidden_dim",
|
||||
type=int,
|
||||
default=16,
|
||||
help="The hidden dimension.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--meta_lr",
|
||||
type=float,
|
||||
default=0.01,
|
||||
help="The learning rate for the MAML optimizer (default is Adam)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--fail_thresh",
|
||||
type=float,
|
||||
default=1000,
|
||||
help="The threshold for the failure, which we reuse the previous best model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--inner_lr",
|
||||
type=float,
|
||||
default=0.005,
|
||||
help="The learning rate for the inner optimization",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--inner_step", type=int, default=1, help="The inner loop steps for MAML."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--prev_time",
|
||||
type=int,
|
||||
default=5,
|
||||
help="The gap between prev_time and current_timestamp",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--meta_batch",
|
||||
type=int,
|
||||
default=64,
|
||||
help="The batch size for the meta-model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--epochs",
|
||||
type=int,
|
||||
default=2000,
|
||||
help="The total number of epochs.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--early_stop_thresh",
|
||||
type=int,
|
||||
default=50,
|
||||
help="The maximum epochs for early stop.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--workers",
|
||||
type=int,
|
||||
default=4,
|
||||
help="The number of data loading workers (default: 4)",
|
||||
)
|
||||
# Random Seed
|
||||
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
||||
args = parser.parse_args()
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
assert args.save_dir is not None, "The save dir argument can not be None"
|
||||
args.save_dir = "{:}-s{:}-mlr{:}-d{:}-prev{:}-e{:}-env{:}".format(
|
||||
args.save_dir,
|
||||
args.inner_step,
|
||||
args.meta_lr,
|
||||
args.hidden_dim,
|
||||
args.prev_time,
|
||||
args.epochs,
|
||||
args.env_version,
|
||||
)
|
||||
main(args)
|
203
exps/GeMOSA/basic-prev.py
Normal file
203
exps/GeMOSA/basic-prev.py
Normal file
@@ -0,0 +1,203 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
# python exps/LFNA/basic-prev.py --env_version v1 --prev_time 5 --hidden_dim 16 --epochs 500 --init_lr 0.1
|
||||
# python exps/LFNA/basic-prev.py --env_version v2 --hidden_dim 16 --epochs 1000 --init_lr 0.05
|
||||
#####################################################
|
||||
import sys, time, copy, torch, random, argparse
|
||||
from tqdm import tqdm
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
|
||||
from xautodl.procedures import (
|
||||
prepare_seed,
|
||||
prepare_logger,
|
||||
save_checkpoint,
|
||||
copy_checkpoint,
|
||||
)
|
||||
from xautodl.log_utils import time_string
|
||||
from xautodl.log_utils import AverageMeter, convert_secs2time
|
||||
|
||||
from xautodl.utils import split_str2indexes
|
||||
|
||||
from xautodl.procedures.advanced_main import basic_train_fn, basic_eval_fn
|
||||
from xautodl.procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
|
||||
from xautodl.datasets.synthetic_core import get_synthetic_env
|
||||
from xautodl.models.xcore import get_model
|
||||
|
||||
from lfna_utils import lfna_setup
|
||||
|
||||
|
||||
def subsample(historical_x, historical_y, maxn=10000):
|
||||
total = historical_x.size(0)
|
||||
if total <= maxn:
|
||||
return historical_x, historical_y
|
||||
else:
|
||||
indexes = torch.randint(low=0, high=total, size=[maxn])
|
||||
return historical_x[indexes], historical_y[indexes]
|
||||
|
||||
|
||||
def main(args):
|
||||
logger, env_info, model_kwargs = lfna_setup(args)
|
||||
|
||||
w_container_per_epoch = dict()
|
||||
|
||||
per_timestamp_time, start_time = AverageMeter(), time.time()
|
||||
for idx in range(args.prev_time, env_info["total"]):
|
||||
|
||||
need_time = "Time Left: {:}".format(
|
||||
convert_secs2time(per_timestamp_time.avg * (env_info["total"] - idx), True)
|
||||
)
|
||||
logger.log(
|
||||
"[{:}]".format(time_string())
|
||||
+ " [{:04d}/{:04d}]".format(idx, env_info["total"])
|
||||
+ " "
|
||||
+ need_time
|
||||
)
|
||||
# train the same data
|
||||
historical_x = env_info["{:}-x".format(idx - args.prev_time)]
|
||||
historical_y = env_info["{:}-y".format(idx - args.prev_time)]
|
||||
# build model
|
||||
model = get_model(**model_kwargs)
|
||||
print(model)
|
||||
# build optimizer
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, amsgrad=True)
|
||||
criterion = torch.nn.MSELoss()
|
||||
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
||||
optimizer,
|
||||
milestones=[
|
||||
int(args.epochs * 0.25),
|
||||
int(args.epochs * 0.5),
|
||||
int(args.epochs * 0.75),
|
||||
],
|
||||
gamma=0.3,
|
||||
)
|
||||
train_metric = MSEMetric()
|
||||
best_loss, best_param = None, None
|
||||
for _iepoch in range(args.epochs):
|
||||
preds = model(historical_x)
|
||||
optimizer.zero_grad()
|
||||
loss = criterion(preds, historical_y)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
# save best
|
||||
if best_loss is None or best_loss > loss.item():
|
||||
best_loss = loss.item()
|
||||
best_param = copy.deepcopy(model.state_dict())
|
||||
model.load_state_dict(best_param)
|
||||
model.analyze_weights()
|
||||
with torch.no_grad():
|
||||
train_metric(preds, historical_y)
|
||||
train_results = train_metric.get_info()
|
||||
|
||||
metric = ComposeMetric(MSEMetric(), SaveMetric())
|
||||
eval_dataset = torch.utils.data.TensorDataset(
|
||||
env_info["{:}-x".format(idx)], env_info["{:}-y".format(idx)]
|
||||
)
|
||||
eval_loader = torch.utils.data.DataLoader(
|
||||
eval_dataset, batch_size=args.batch_size, shuffle=False, num_workers=0
|
||||
)
|
||||
results = basic_eval_fn(eval_loader, model, metric, logger)
|
||||
log_str = (
|
||||
"[{:}]".format(time_string())
|
||||
+ " [{:04d}/{:04d}]".format(idx, env_info["total"])
|
||||
+ " train-mse: {:.5f}, eval-mse: {:.5f}".format(
|
||||
train_results["mse"], results["mse"]
|
||||
)
|
||||
)
|
||||
logger.log(log_str)
|
||||
|
||||
save_path = logger.path(None) / "{:04d}-{:04d}.pth".format(
|
||||
idx, env_info["total"]
|
||||
)
|
||||
w_container_per_epoch[idx] = model.get_w_container().no_grad_clone()
|
||||
save_checkpoint(
|
||||
{
|
||||
"model_state_dict": model.state_dict(),
|
||||
"model": model,
|
||||
"index": idx,
|
||||
"timestamp": env_info["{:}-timestamp".format(idx)],
|
||||
},
|
||||
save_path,
|
||||
logger,
|
||||
)
|
||||
logger.log("")
|
||||
per_timestamp_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
|
||||
save_checkpoint(
|
||||
{"w_container_per_epoch": w_container_per_epoch},
|
||||
logger.path(None) / "final-ckp.pth",
|
||||
logger,
|
||||
)
|
||||
|
||||
logger.log("-" * 200 + "\n")
|
||||
logger.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser("Use the data in the last timestamp.")
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
default="./outputs/lfna-synthetic/use-prev-timestamp",
|
||||
help="The checkpoint directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--env_version",
|
||||
type=str,
|
||||
required=True,
|
||||
help="The synthetic enviornment version.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hidden_dim",
|
||||
type=int,
|
||||
required=True,
|
||||
help="The hidden dimension.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--init_lr",
|
||||
type=float,
|
||||
default=0.1,
|
||||
help="The initial learning rate for the optimizer (default is Adam)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--prev_time",
|
||||
type=int,
|
||||
default=5,
|
||||
help="The gap between prev_time and current_timestamp",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch_size",
|
||||
type=int,
|
||||
default=512,
|
||||
help="The batch size",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--epochs",
|
||||
type=int,
|
||||
default=300,
|
||||
help="The total number of epochs.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--workers",
|
||||
type=int,
|
||||
default=4,
|
||||
help="The number of data loading workers (default: 4)",
|
||||
)
|
||||
# Random Seed
|
||||
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
||||
args = parser.parse_args()
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
assert args.save_dir is not None, "The save dir argument can not be None"
|
||||
args.save_dir = "{:}-d{:}_e{:}_lr{:}-prev{:}-env{:}".format(
|
||||
args.save_dir,
|
||||
args.hidden_dim,
|
||||
args.epochs,
|
||||
args.init_lr,
|
||||
args.prev_time,
|
||||
args.env_version,
|
||||
)
|
||||
main(args)
|
204
exps/GeMOSA/basic-same.py
Normal file
204
exps/GeMOSA/basic-same.py
Normal file
@@ -0,0 +1,204 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
# python exps/GeMOSA/basic-same.py --env_version v1 --hidden_dim 16 --epochs 500 --init_lr 0.1
|
||||
# python exps/GeMOSA/basic-same.py --env_version v2 --hidden_dim 16 --epochs 1000 --init_lr 0.05
|
||||
#####################################################
|
||||
import sys, time, copy, torch, random, argparse
|
||||
from tqdm import tqdm
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / "..").resolve()
|
||||
print("LIB-DIR: {:}".format(lib_dir))
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
|
||||
|
||||
from xautodl.procedures import (
|
||||
prepare_seed,
|
||||
prepare_logger,
|
||||
save_checkpoint,
|
||||
copy_checkpoint,
|
||||
)
|
||||
from xautodl.log_utils import time_string
|
||||
from xautodl.log_utils import AverageMeter, convert_secs2time
|
||||
|
||||
from xautodl.utils import split_str2indexes
|
||||
|
||||
from xautodl.procedures.advanced_main import basic_train_fn, basic_eval_fn
|
||||
from xautodl.procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
|
||||
from xautodl.datasets.synthetic_core import get_synthetic_env
|
||||
from xautodl.models.xcore import get_model
|
||||
|
||||
from lfna_utils import lfna_setup
|
||||
|
||||
|
||||
def subsample(historical_x, historical_y, maxn=10000):
|
||||
total = historical_x.size(0)
|
||||
if total <= maxn:
|
||||
return historical_x, historical_y
|
||||
else:
|
||||
indexes = torch.randint(low=0, high=total, size=[maxn])
|
||||
return historical_x[indexes], historical_y[indexes]
|
||||
|
||||
|
||||
def main(args):
|
||||
logger, model_kwargs = lfna_setup(args)
|
||||
|
||||
env = get_synthetic_env(mode=None, version=args.env_version)
|
||||
logger.log("The total enviornment: {:}".format(env))
|
||||
w_containers = dict()
|
||||
|
||||
per_timestamp_time, start_time = AverageMeter(), time.time()
|
||||
for idx, (future_time, (future_x, future_y)) in enumerate(env):
|
||||
|
||||
need_time = "Time Left: {:}".format(
|
||||
convert_secs2time(per_timestamp_time.avg * (len(env) - idx), True)
|
||||
)
|
||||
logger.log(
|
||||
"[{:}]".format(time_string())
|
||||
+ " [{:04d}/{:04d}]".format(idx, len(env))
|
||||
+ " "
|
||||
+ need_time
|
||||
)
|
||||
# train the same data
|
||||
historical_x = future_x.to(args.device)
|
||||
historical_y = future_y.to(args.device)
|
||||
# build model
|
||||
model = get_model(**model_kwargs)
|
||||
model = model.to(args.device)
|
||||
# build optimizer
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, amsgrad=True)
|
||||
criterion = torch.nn.MSELoss()
|
||||
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
||||
optimizer,
|
||||
milestones=[
|
||||
int(args.epochs * 0.25),
|
||||
int(args.epochs * 0.5),
|
||||
int(args.epochs * 0.75),
|
||||
],
|
||||
gamma=0.3,
|
||||
)
|
||||
train_metric = MSEMetric()
|
||||
best_loss, best_param = None, None
|
||||
for _iepoch in range(args.epochs):
|
||||
preds = model(historical_x)
|
||||
optimizer.zero_grad()
|
||||
loss = criterion(preds, historical_y)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
# save best
|
||||
if best_loss is None or best_loss > loss.item():
|
||||
best_loss = loss.item()
|
||||
best_param = copy.deepcopy(model.state_dict())
|
||||
model.load_state_dict(best_param)
|
||||
model.analyze_weights()
|
||||
with torch.no_grad():
|
||||
train_metric(preds, historical_y)
|
||||
train_results = train_metric.get_info()
|
||||
|
||||
metric = ComposeMetric(MSEMetric(), SaveMetric())
|
||||
eval_dataset = torch.utils.data.TensorDataset(
|
||||
future_x.to(args.device), future_y.to(args.device)
|
||||
)
|
||||
eval_loader = torch.utils.data.DataLoader(
|
||||
eval_dataset, batch_size=args.batch_size, shuffle=False, num_workers=0
|
||||
)
|
||||
results = basic_eval_fn(eval_loader, model, metric, logger)
|
||||
log_str = (
|
||||
"[{:}]".format(time_string())
|
||||
+ " [{:04d}/{:04d}]".format(idx, len(env))
|
||||
+ " train-mse: {:.5f}, eval-mse: {:.5f}".format(
|
||||
train_results["mse"], results["mse"]
|
||||
)
|
||||
)
|
||||
logger.log(log_str)
|
||||
|
||||
save_path = logger.path(None) / "{:04d}-{:04d}.pth".format(idx, len(env))
|
||||
w_containers[idx] = model.get_w_container().no_grad_clone()
|
||||
save_checkpoint(
|
||||
{
|
||||
"model_state_dict": model.state_dict(),
|
||||
"model": model,
|
||||
"index": idx,
|
||||
"timestamp": future_time.item(),
|
||||
},
|
||||
save_path,
|
||||
logger,
|
||||
)
|
||||
logger.log("")
|
||||
per_timestamp_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
|
||||
save_checkpoint(
|
||||
{"w_containers": w_containers},
|
||||
logger.path(None) / "final-ckp.pth",
|
||||
logger,
|
||||
)
|
||||
|
||||
logger.log("-" * 200 + "\n")
|
||||
logger.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser("Use the data in the past.")
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
default="./outputs/lfna-synthetic/use-same-timestamp",
|
||||
help="The checkpoint directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--env_version",
|
||||
type=str,
|
||||
required=True,
|
||||
help="The synthetic enviornment version.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hidden_dim",
|
||||
type=int,
|
||||
required=True,
|
||||
help="The hidden dimension.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--init_lr",
|
||||
type=float,
|
||||
default=0.1,
|
||||
help="The initial learning rate for the optimizer (default is Adam)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch_size",
|
||||
type=int,
|
||||
default=512,
|
||||
help="The batch size",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--epochs",
|
||||
type=int,
|
||||
default=300,
|
||||
help="The total number of epochs.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default="cpu",
|
||||
help="",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--workers",
|
||||
type=int,
|
||||
default=4,
|
||||
help="The number of data loading workers (default: 4)",
|
||||
)
|
||||
# Random Seed
|
||||
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
||||
args = parser.parse_args()
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
assert args.save_dir is not None, "The save dir argument can not be None"
|
||||
args.save_dir = "{:}-d{:}_e{:}_lr{:}-env{:}".format(
|
||||
args.save_dir, args.hidden_dim, args.epochs, args.init_lr, args.env_version
|
||||
)
|
||||
main(args)
|
265
exps/GeMOSA/lfna_meta_model.py
Normal file
265
exps/GeMOSA/lfna_meta_model.py
Normal file
@@ -0,0 +1,265 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
import torch
|
||||
|
||||
import torch.nn.functional as F
|
||||
|
||||
from xautodl.xlayers import super_core
|
||||
from xautodl.xlayers import trunc_normal_
|
||||
from xautodl.models.xcore import get_model
|
||||
|
||||
|
||||
class MetaModelV1(super_core.SuperModule):
|
||||
"""Learning to Generate Models One Step Ahead (Meta Model Design)."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
shape_container,
|
||||
layer_dim,
|
||||
time_dim,
|
||||
meta_timestamps,
|
||||
dropout: float = 0.1,
|
||||
seq_length: int = 10,
|
||||
interval: float = None,
|
||||
thresh: float = None,
|
||||
):
|
||||
super(MetaModelV1, self).__init__()
|
||||
self._shape_container = shape_container
|
||||
self._num_layers = len(shape_container)
|
||||
self._numel_per_layer = []
|
||||
for ilayer in range(self._num_layers):
|
||||
self._numel_per_layer.append(shape_container[ilayer].numel())
|
||||
self._raw_meta_timestamps = meta_timestamps
|
||||
assert interval is not None
|
||||
self._interval = interval
|
||||
self._seq_length = seq_length
|
||||
self._thresh = interval * 50 if thresh is None else thresh
|
||||
|
||||
self.register_parameter(
|
||||
"_super_layer_embed",
|
||||
torch.nn.Parameter(torch.Tensor(self._num_layers, layer_dim)),
|
||||
)
|
||||
self.register_parameter(
|
||||
"_super_meta_embed",
|
||||
torch.nn.Parameter(torch.Tensor(len(meta_timestamps), time_dim)),
|
||||
)
|
||||
self.register_buffer("_meta_timestamps", torch.Tensor(meta_timestamps))
|
||||
# register a time difference buffer
|
||||
time_interval = [-i * self._interval for i in range(self._seq_length)]
|
||||
time_interval.reverse()
|
||||
self.register_buffer("_time_interval", torch.Tensor(time_interval))
|
||||
self._time_embed_dim = time_dim
|
||||
self._append_meta_embed = dict(fixed=None, learnt=None)
|
||||
self._append_meta_timestamps = dict(fixed=None, learnt=None)
|
||||
|
||||
self._tscalar_embed = super_core.SuperDynamicPositionE(
|
||||
time_dim, scale=1 / interval
|
||||
)
|
||||
|
||||
# build transformer
|
||||
self._trans_att = super_core.SuperQKVAttentionV2(
|
||||
qk_att_dim=time_dim,
|
||||
in_v_dim=time_dim,
|
||||
hidden_dim=time_dim,
|
||||
num_heads=4,
|
||||
proj_dim=time_dim,
|
||||
qkv_bias=True,
|
||||
attn_drop=None,
|
||||
proj_drop=dropout,
|
||||
)
|
||||
|
||||
model_kwargs = dict(
|
||||
config=dict(model_type="dual_norm_mlp"),
|
||||
input_dim=layer_dim + time_dim,
|
||||
output_dim=max(self._numel_per_layer),
|
||||
hidden_dims=[(layer_dim + time_dim) * 2] * 3,
|
||||
act_cls="gelu",
|
||||
norm_cls="layer_norm_1d",
|
||||
dropout=dropout,
|
||||
)
|
||||
self._generator = get_model(**model_kwargs)
|
||||
|
||||
# initialization
|
||||
trunc_normal_(
|
||||
[self._super_layer_embed, self._super_meta_embed],
|
||||
std=0.02,
|
||||
)
|
||||
|
||||
def get_parameters(self, time_embed, attention, generator):
|
||||
parameters = []
|
||||
if time_embed:
|
||||
parameters.append(self._super_meta_embed)
|
||||
if attention:
|
||||
parameters.extend(list(self._trans_att.parameters()))
|
||||
if generator:
|
||||
parameters.append(self._super_layer_embed)
|
||||
parameters.extend(list(self._generator.parameters()))
|
||||
return parameters
|
||||
|
||||
@property
|
||||
def meta_timestamps(self):
|
||||
with torch.no_grad():
|
||||
meta_timestamps = [self._meta_timestamps]
|
||||
for key in ("fixed", "learnt"):
|
||||
if self._append_meta_timestamps[key] is not None:
|
||||
meta_timestamps.append(self._append_meta_timestamps[key])
|
||||
return torch.cat(meta_timestamps)
|
||||
|
||||
@property
|
||||
def super_meta_embed(self):
|
||||
meta_embed = [self._super_meta_embed]
|
||||
for key in ("fixed", "learnt"):
|
||||
if self._append_meta_embed[key] is not None:
|
||||
meta_embed.append(self._append_meta_embed[key])
|
||||
return torch.cat(meta_embed)
|
||||
|
||||
def create_meta_embed(self):
|
||||
param = torch.Tensor(1, self._time_embed_dim)
|
||||
trunc_normal_(param, std=0.02)
|
||||
param = param.to(self._super_meta_embed.device)
|
||||
param = torch.nn.Parameter(param, True)
|
||||
return param
|
||||
|
||||
def get_closest_meta_distance(self, timestamp):
|
||||
with torch.no_grad():
|
||||
distances = torch.abs(self.meta_timestamps - timestamp)
|
||||
return torch.min(distances).item()
|
||||
|
||||
def replace_append_learnt(self, timestamp, meta_embed):
|
||||
self._append_meta_timestamps["learnt"] = timestamp
|
||||
self._append_meta_embed["learnt"] = meta_embed
|
||||
|
||||
@property
|
||||
def meta_length(self):
|
||||
return self.meta_timestamps.numel()
|
||||
|
||||
def clear_fixed(self):
|
||||
self._append_meta_timestamps["fixed"] = None
|
||||
self._append_meta_embed["fixed"] = None
|
||||
|
||||
def clear_learnt(self):
|
||||
self.replace_append_learnt(None, None)
|
||||
|
||||
def append_fixed(self, timestamp, meta_embed):
|
||||
with torch.no_grad():
|
||||
device = self._super_meta_embed.device
|
||||
timestamp = timestamp.detach().clone().to(device)
|
||||
meta_embed = meta_embed.detach().clone().to(device)
|
||||
if self._append_meta_timestamps["fixed"] is None:
|
||||
self._append_meta_timestamps["fixed"] = timestamp
|
||||
else:
|
||||
self._append_meta_timestamps["fixed"] = torch.cat(
|
||||
(self._append_meta_timestamps["fixed"], timestamp), dim=0
|
||||
)
|
||||
if self._append_meta_embed["fixed"] is None:
|
||||
self._append_meta_embed["fixed"] = meta_embed
|
||||
else:
|
||||
self._append_meta_embed["fixed"] = torch.cat(
|
||||
(self._append_meta_embed["fixed"], meta_embed), dim=0
|
||||
)
|
||||
|
||||
def _obtain_time_embed(self, timestamps):
|
||||
# timestamps is a batch of sequence of timestamps
|
||||
batch, seq = timestamps.shape
|
||||
meta_timestamps, meta_embeds = self.meta_timestamps, self.super_meta_embed
|
||||
timestamp_v_embed = meta_embeds.unsqueeze(dim=0)
|
||||
timestamp_qk_att_embed = self._tscalar_embed(
|
||||
torch.unsqueeze(timestamps, dim=-1) - meta_timestamps
|
||||
)
|
||||
# create the mask
|
||||
mask = (
|
||||
torch.unsqueeze(timestamps, dim=-1) <= meta_timestamps.view(1, 1, -1)
|
||||
) | (
|
||||
torch.abs(
|
||||
torch.unsqueeze(timestamps, dim=-1) - meta_timestamps.view(1, 1, -1)
|
||||
)
|
||||
> self._thresh
|
||||
)
|
||||
timestamp_embeds = self._trans_att(
|
||||
timestamp_qk_att_embed,
|
||||
timestamp_v_embed,
|
||||
mask,
|
||||
)
|
||||
return timestamp_embeds[:, -1, :]
|
||||
|
||||
def forward_raw(self, timestamps, time_embeds, tembed_only=False):
|
||||
if time_embeds is None:
|
||||
time_seq = timestamps.view(-1, 1) + self._time_interval.view(1, -1)
|
||||
B, S = time_seq.shape
|
||||
time_embeds = self._obtain_time_embed(time_seq)
|
||||
else: # use the hyper-net only
|
||||
time_seq = None
|
||||
B, _ = time_embeds.shape
|
||||
if tembed_only:
|
||||
return time_embeds
|
||||
# create joint embed
|
||||
num_layer, _ = self._super_layer_embed.shape
|
||||
# The shape of `joint_embed` is batch * num-layers * input-dim
|
||||
joint_embeds = torch.cat(
|
||||
(
|
||||
time_embeds.view(B, 1, -1).expand(-1, num_layer, -1),
|
||||
self._super_layer_embed.view(1, num_layer, -1).expand(B, -1, -1),
|
||||
),
|
||||
dim=-1,
|
||||
)
|
||||
batch_weights = self._generator(joint_embeds)
|
||||
batch_containers = []
|
||||
for weights in torch.split(batch_weights, 1):
|
||||
batch_containers.append(
|
||||
self._shape_container.translate(torch.split(weights.squeeze(0), 1))
|
||||
)
|
||||
return time_seq, batch_containers, time_embeds
|
||||
|
||||
def forward_candidate(self, input):
|
||||
raise NotImplementedError
|
||||
|
||||
def adapt(self, base_model, criterion, timestamp, x, y, lr, epochs, init_info):
|
||||
distance = self.get_closest_meta_distance(timestamp)
|
||||
if distance + self._interval * 1e-2 <= self._interval:
|
||||
return False, None
|
||||
x, y = x.to(self._meta_timestamps.device), y.to(self._meta_timestamps.device)
|
||||
with torch.set_grad_enabled(True):
|
||||
new_param = self.create_meta_embed()
|
||||
|
||||
optimizer = torch.optim.Adam(
|
||||
[new_param], lr=lr, weight_decay=1e-5, amsgrad=True
|
||||
)
|
||||
timestamp = torch.Tensor([timestamp]).to(new_param.device)
|
||||
self.replace_append_learnt(timestamp, new_param)
|
||||
self.train()
|
||||
base_model.train()
|
||||
if init_info is not None:
|
||||
best_loss = init_info["loss"]
|
||||
new_param.data.copy_(init_info["param"].data)
|
||||
else:
|
||||
best_loss = 1e9
|
||||
with torch.no_grad():
|
||||
best_new_param = new_param.detach().clone()
|
||||
for iepoch in range(epochs):
|
||||
optimizer.zero_grad()
|
||||
_, [_], time_embed = self(timestamp.view(1, 1), None)
|
||||
match_loss = criterion(new_param, time_embed)
|
||||
|
||||
_, [container], time_embed = self(None, new_param.view(1, 1, -1))
|
||||
y_hat = base_model.forward_with_container(x, container)
|
||||
meta_loss = criterion(y_hat, y)
|
||||
loss = meta_loss + match_loss
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
# print("{:03d}/{:03d} : loss : {:.4f} = {:.4f} + {:.4f}".format(iepoch, epochs, loss.item(), meta_loss.item(), match_loss.item()))
|
||||
if meta_loss.item() < best_loss:
|
||||
with torch.no_grad():
|
||||
best_loss = meta_loss.item()
|
||||
best_new_param = new_param.detach().clone()
|
||||
with torch.no_grad():
|
||||
self.replace_append_learnt(None, None)
|
||||
self.append_fixed(timestamp, best_new_param)
|
||||
return True, best_loss
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return "(_super_layer_embed): {:}, (_super_meta_embed): {:}, (_meta_timestamps): {:}".format(
|
||||
list(self._super_layer_embed.shape),
|
||||
list(self._super_meta_embed.shape),
|
||||
list(self._meta_timestamps.shape),
|
||||
)
|
117
exps/GeMOSA/lfna_models.py
Normal file
117
exps/GeMOSA/lfna_models.py
Normal file
@@ -0,0 +1,117 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
import copy
|
||||
import torch
|
||||
|
||||
import torch.nn.functional as F
|
||||
|
||||
from xlayers import super_core
|
||||
from xlayers import trunc_normal_
|
||||
from models.xcore import get_model
|
||||
|
||||
|
||||
class HyperNet(super_core.SuperModule):
|
||||
"""The hyper-network."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
shape_container,
|
||||
layer_embeding,
|
||||
task_embedding,
|
||||
num_tasks,
|
||||
return_container=True,
|
||||
):
|
||||
super(HyperNet, self).__init__()
|
||||
self._shape_container = shape_container
|
||||
self._num_layers = len(shape_container)
|
||||
self._numel_per_layer = []
|
||||
for ilayer in range(self._num_layers):
|
||||
self._numel_per_layer.append(shape_container[ilayer].numel())
|
||||
|
||||
self.register_parameter(
|
||||
"_super_layer_embed",
|
||||
torch.nn.Parameter(torch.Tensor(self._num_layers, layer_embeding)),
|
||||
)
|
||||
self.register_parameter(
|
||||
"_super_task_embed",
|
||||
torch.nn.Parameter(torch.Tensor(num_tasks, task_embedding)),
|
||||
)
|
||||
trunc_normal_(self._super_layer_embed, std=0.02)
|
||||
trunc_normal_(self._super_task_embed, std=0.02)
|
||||
|
||||
model_kwargs = dict(
|
||||
config=dict(model_type="dual_norm_mlp"),
|
||||
input_dim=layer_embeding + task_embedding,
|
||||
output_dim=max(self._numel_per_layer),
|
||||
hidden_dims=[(layer_embeding + task_embedding) * 2] * 3,
|
||||
act_cls="gelu",
|
||||
norm_cls="layer_norm_1d",
|
||||
dropout=0.2,
|
||||
)
|
||||
self._generator = get_model(**model_kwargs)
|
||||
self._return_container = return_container
|
||||
print("generator: {:}".format(self._generator))
|
||||
|
||||
def forward_raw(self, task_embed_id):
|
||||
layer_embed = self._super_layer_embed
|
||||
task_embed = (
|
||||
self._super_task_embed[task_embed_id]
|
||||
.view(1, -1)
|
||||
.expand(self._num_layers, -1)
|
||||
)
|
||||
|
||||
joint_embed = torch.cat((task_embed, layer_embed), dim=-1)
|
||||
weights = self._generator(joint_embed)
|
||||
if self._return_container:
|
||||
weights = torch.split(weights, 1)
|
||||
return self._shape_container.translate(weights)
|
||||
else:
|
||||
return weights
|
||||
|
||||
def forward_candidate(self, input):
|
||||
raise NotImplementedError
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return "(_super_layer_embed): {:}".format(list(self._super_layer_embed.shape))
|
||||
|
||||
|
||||
class HyperNet_VX(super_core.SuperModule):
|
||||
def __init__(self, shape_container, input_embeding, return_container=True):
|
||||
super(HyperNet_VX, self).__init__()
|
||||
self._shape_container = shape_container
|
||||
self._num_layers = len(shape_container)
|
||||
self._numel_per_layer = []
|
||||
for ilayer in range(self._num_layers):
|
||||
self._numel_per_layer.append(shape_container[ilayer].numel())
|
||||
|
||||
self.register_parameter(
|
||||
"_super_layer_embed",
|
||||
torch.nn.Parameter(torch.Tensor(self._num_layers, input_embeding)),
|
||||
)
|
||||
trunc_normal_(self._super_layer_embed, std=0.02)
|
||||
|
||||
model_kwargs = dict(
|
||||
input_dim=input_embeding,
|
||||
output_dim=max(self._numel_per_layer),
|
||||
hidden_dim=input_embeding * 4,
|
||||
act_cls="sigmoid",
|
||||
norm_cls="identity",
|
||||
)
|
||||
self._generator = get_model(dict(model_type="simple_mlp"), **model_kwargs)
|
||||
self._return_container = return_container
|
||||
print("generator: {:}".format(self._generator))
|
||||
|
||||
def forward_raw(self, input):
|
||||
weights = self._generator(self._super_layer_embed)
|
||||
if self._return_container:
|
||||
weights = torch.split(weights, 1)
|
||||
return self._shape_container.translate(weights)
|
||||
else:
|
||||
return weights
|
||||
|
||||
def forward_candidate(self, input):
|
||||
raise NotImplementedError
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return "(_super_layer_embed): {:}".format(list(self._super_layer_embed.shape))
|
64
exps/GeMOSA/lfna_utils.py
Normal file
64
exps/GeMOSA/lfna_utils.py
Normal file
@@ -0,0 +1,64 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||
#####################################################
|
||||
import copy
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
from xautodl.procedures import prepare_seed, prepare_logger
|
||||
from xautodl.datasets.synthetic_core import get_synthetic_env
|
||||
|
||||
|
||||
def lfna_setup(args):
|
||||
prepare_seed(args.rand_seed)
|
||||
logger = prepare_logger(args)
|
||||
model_kwargs = dict(
|
||||
config=dict(model_type="norm_mlp"),
|
||||
input_dim=1,
|
||||
output_dim=1,
|
||||
hidden_dims=[args.hidden_dim] * 2,
|
||||
act_cls="gelu",
|
||||
norm_cls="layer_norm_1d",
|
||||
)
|
||||
return logger, model_kwargs
|
||||
|
||||
|
||||
def train_model(model, dataset, lr, epochs):
|
||||
criterion = torch.nn.MSELoss()
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=lr, amsgrad=True)
|
||||
best_loss, best_param = None, None
|
||||
for _iepoch in range(epochs):
|
||||
preds = model(dataset.x)
|
||||
optimizer.zero_grad()
|
||||
loss = criterion(preds, dataset.y)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
# save best
|
||||
if best_loss is None or best_loss > loss.item():
|
||||
best_loss = loss.item()
|
||||
best_param = copy.deepcopy(model.state_dict())
|
||||
model.load_state_dict(best_param)
|
||||
return best_loss
|
||||
|
||||
|
||||
class TimeData:
|
||||
def __init__(self, timestamp, xs, ys):
|
||||
self._timestamp = timestamp
|
||||
self._xs = xs
|
||||
self._ys = ys
|
||||
|
||||
@property
|
||||
def x(self):
|
||||
return self._xs
|
||||
|
||||
@property
|
||||
def y(self):
|
||||
return self._ys
|
||||
|
||||
@property
|
||||
def timestamp(self):
|
||||
return self._timestamp
|
||||
|
||||
def __repr__(self):
|
||||
return "{name}(timestamp={timestamp}, with {num} samples)".format(
|
||||
name=self.__class__.__name__, timestamp=self._timestamp, num=len(self._xs)
|
||||
)
|
343
exps/GeMOSA/main.py
Normal file
343
exps/GeMOSA/main.py
Normal file
@@ -0,0 +1,343 @@
|
||||
#####################################################
|
||||
# Learning to Generate Model One Step Ahead #
|
||||
#####################################################
|
||||
# python exps/GeMOSA/lfna.py --env_version v1 --workers 0
|
||||
# python exps/GeMOSA/lfna.py --env_version v1 --device cuda --lr 0.001
|
||||
# python exps/GeMOSA/main.py --env_version v1 --device cuda --lr 0.002 --seq_length 16 --meta_batch 128
|
||||
# python exps/GeMOSA/lfna.py --env_version v1 --device cuda --lr 0.002 --seq_length 24 --time_dim 32 --meta_batch 128
|
||||
#####################################################
|
||||
import sys, time, copy, torch, random, argparse
|
||||
from tqdm import tqdm
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
from torch.nn import functional as F
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / "..").resolve()
|
||||
print("LIB-DIR: {:}".format(lib_dir))
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
|
||||
from xautodl.procedures import (
|
||||
prepare_seed,
|
||||
prepare_logger,
|
||||
save_checkpoint,
|
||||
copy_checkpoint,
|
||||
)
|
||||
from xautodl.log_utils import time_string
|
||||
from xautodl.log_utils import AverageMeter, convert_secs2time
|
||||
|
||||
from xautodl.utils import split_str2indexes
|
||||
|
||||
from xautodl.procedures.advanced_main import basic_train_fn, basic_eval_fn
|
||||
from xautodl.procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
|
||||
from xautodl.datasets.synthetic_core import get_synthetic_env
|
||||
from xautodl.models.xcore import get_model
|
||||
from xautodl.xlayers import super_core, trunc_normal_
|
||||
|
||||
from lfna_utils import lfna_setup, train_model, TimeData
|
||||
from lfna_meta_model import MetaModelV1
|
||||
|
||||
|
||||
def online_evaluate(env, meta_model, base_model, criterion, args, logger, save=False):
|
||||
logger.log("Online evaluate: {:}".format(env))
|
||||
loss_meter = AverageMeter()
|
||||
w_containers = dict()
|
||||
for idx, (future_time, (future_x, future_y)) in enumerate(env):
|
||||
with torch.no_grad():
|
||||
meta_model.eval()
|
||||
base_model.eval()
|
||||
_, [future_container], time_embeds = meta_model(
|
||||
future_time.to(args.device).view(1, 1), None, False
|
||||
)
|
||||
if save:
|
||||
w_containers[idx] = future_container.no_grad_clone()
|
||||
future_x, future_y = future_x.to(args.device), future_y.to(args.device)
|
||||
future_y_hat = base_model.forward_with_container(future_x, future_container)
|
||||
future_loss = criterion(future_y_hat, future_y)
|
||||
loss_meter.update(future_loss.item())
|
||||
refine, post_refine_loss = meta_model.adapt(
|
||||
base_model,
|
||||
criterion,
|
||||
future_time.item(),
|
||||
future_x,
|
||||
future_y,
|
||||
args.refine_lr,
|
||||
args.refine_epochs,
|
||||
{"param": time_embeds, "loss": future_loss.item()},
|
||||
)
|
||||
logger.log(
|
||||
"[ONLINE] [{:03d}/{:03d}] loss={:.4f}".format(
|
||||
idx, len(env), future_loss.item()
|
||||
)
|
||||
+ ", post-loss={:.4f}".format(post_refine_loss if refine else -1)
|
||||
)
|
||||
meta_model.clear_fixed()
|
||||
meta_model.clear_learnt()
|
||||
return w_containers, loss_meter
|
||||
|
||||
|
||||
def meta_train_procedure(base_model, meta_model, criterion, xenv, args, logger):
|
||||
base_model.train()
|
||||
meta_model.train()
|
||||
optimizer = torch.optim.Adam(
|
||||
meta_model.get_parameters(True, True, True),
|
||||
lr=args.lr,
|
||||
weight_decay=args.weight_decay,
|
||||
amsgrad=True,
|
||||
)
|
||||
logger.log("Pre-train the meta-model")
|
||||
logger.log("Using the optimizer: {:}".format(optimizer))
|
||||
|
||||
meta_model.set_best_dir(logger.path(None) / "ckps-pretrain-v2")
|
||||
final_best_name = "final-pretrain-{:}.pth".format(args.rand_seed)
|
||||
if meta_model.has_best(final_best_name):
|
||||
meta_model.load_best(final_best_name)
|
||||
logger.log("Directly load the best model from {:}".format(final_best_name))
|
||||
return
|
||||
|
||||
total_indexes = list(range(meta_model.meta_length))
|
||||
meta_model.set_best_name("pretrain-{:}.pth".format(args.rand_seed))
|
||||
last_success_epoch, early_stop_thresh = 0, args.pretrain_early_stop_thresh
|
||||
per_epoch_time, start_time = AverageMeter(), time.time()
|
||||
device = args.device
|
||||
for iepoch in range(args.epochs):
|
||||
left_time = "Time Left: {:}".format(
|
||||
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
|
||||
)
|
||||
optimizer.zero_grad()
|
||||
|
||||
generated_time_embeds = meta_model(meta_model.meta_timestamps, None, True)
|
||||
|
||||
batch_indexes = random.choices(total_indexes, k=args.meta_batch)
|
||||
|
||||
raw_time_steps = meta_model.meta_timestamps[batch_indexes]
|
||||
|
||||
regularization_loss = F.l1_loss(
|
||||
generated_time_embeds, meta_model.super_meta_embed, reduction="mean"
|
||||
)
|
||||
# future loss
|
||||
total_future_losses, total_present_losses = [], []
|
||||
_, future_containers, _ = meta_model(
|
||||
None, generated_time_embeds[batch_indexes], False
|
||||
)
|
||||
_, present_containers, _ = meta_model(
|
||||
None, meta_model.super_meta_embed[batch_indexes], False
|
||||
)
|
||||
for ibatch, time_step in enumerate(raw_time_steps.cpu().tolist()):
|
||||
_, (inputs, targets) = xenv(time_step)
|
||||
inputs, targets = inputs.to(device), targets.to(device)
|
||||
|
||||
predictions = base_model.forward_with_container(
|
||||
inputs, future_containers[ibatch]
|
||||
)
|
||||
total_future_losses.append(criterion(predictions, targets))
|
||||
|
||||
predictions = base_model.forward_with_container(
|
||||
inputs, present_containers[ibatch]
|
||||
)
|
||||
total_present_losses.append(criterion(predictions, targets))
|
||||
|
||||
with torch.no_grad():
|
||||
meta_std = torch.stack(total_future_losses).std().item()
|
||||
loss_future = torch.stack(total_future_losses).mean()
|
||||
loss_present = torch.stack(total_present_losses).mean()
|
||||
total_loss = loss_future + loss_present + regularization_loss
|
||||
total_loss.backward()
|
||||
optimizer.step()
|
||||
# success
|
||||
success, best_score = meta_model.save_best(-total_loss.item())
|
||||
logger.log(
|
||||
"{:} [META {:04d}/{:}] loss : {:.4f} +- {:.4f} = {:.4f} + {:.4f} + {:.4f}".format(
|
||||
time_string(),
|
||||
iepoch,
|
||||
args.epochs,
|
||||
total_loss.item(),
|
||||
meta_std,
|
||||
loss_future.item(),
|
||||
loss_present.item(),
|
||||
regularization_loss.item(),
|
||||
)
|
||||
+ ", batch={:}".format(len(total_future_losses))
|
||||
+ ", success={:}, best={:.4f}".format(success, -best_score)
|
||||
+ ", LS={:}/{:}".format(iepoch - last_success_epoch, early_stop_thresh)
|
||||
+ ", {:}".format(left_time)
|
||||
)
|
||||
if success:
|
||||
last_success_epoch = iepoch
|
||||
if iepoch - last_success_epoch >= early_stop_thresh:
|
||||
logger.log("Early stop the pre-training at {:}".format(iepoch))
|
||||
break
|
||||
per_epoch_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
meta_model.load_best()
|
||||
# save to the final model
|
||||
meta_model.set_best_name(final_best_name)
|
||||
success, _ = meta_model.save_best(best_score + 1e-6)
|
||||
assert success
|
||||
logger.log("Save the best model into {:}".format(final_best_name))
|
||||
|
||||
|
||||
def main(args):
|
||||
logger, model_kwargs = lfna_setup(args)
|
||||
train_env = get_synthetic_env(mode="train", version=args.env_version)
|
||||
valid_env = get_synthetic_env(mode="valid", version=args.env_version)
|
||||
trainval_env = get_synthetic_env(mode="trainval", version=args.env_version)
|
||||
all_env = get_synthetic_env(mode=None, version=args.env_version)
|
||||
logger.log("The training enviornment: {:}".format(train_env))
|
||||
logger.log("The validation enviornment: {:}".format(valid_env))
|
||||
logger.log("The trainval enviornment: {:}".format(trainval_env))
|
||||
logger.log("The total enviornment: {:}".format(all_env))
|
||||
|
||||
base_model = get_model(**model_kwargs)
|
||||
base_model = base_model.to(args.device)
|
||||
criterion = torch.nn.MSELoss()
|
||||
|
||||
shape_container = base_model.get_w_container().to_shape_container()
|
||||
|
||||
# pre-train the hypernetwork
|
||||
timestamps = trainval_env.get_timestamp(None)
|
||||
meta_model = MetaModelV1(
|
||||
shape_container,
|
||||
args.layer_dim,
|
||||
args.time_dim,
|
||||
timestamps,
|
||||
seq_length=args.seq_length,
|
||||
interval=trainval_env.time_interval,
|
||||
)
|
||||
meta_model = meta_model.to(args.device)
|
||||
|
||||
logger.log("The base-model has {:} weights.".format(base_model.numel()))
|
||||
logger.log("The meta-model has {:} weights.".format(meta_model.numel()))
|
||||
logger.log("The base-model is\n{:}".format(base_model))
|
||||
logger.log("The meta-model is\n{:}".format(meta_model))
|
||||
|
||||
meta_train_procedure(base_model, meta_model, criterion, trainval_env, args, logger)
|
||||
|
||||
# try to evaluate once
|
||||
# online_evaluate(train_env, meta_model, base_model, criterion, args, logger)
|
||||
# online_evaluate(valid_env, meta_model, base_model, criterion, args, logger)
|
||||
w_containers, loss_meter = online_evaluate(
|
||||
all_env, meta_model, base_model, criterion, args, logger, True
|
||||
)
|
||||
logger.log("In this enviornment, the loss-meter is {:}".format(loss_meter))
|
||||
|
||||
save_checkpoint(
|
||||
{"w_containers": w_containers},
|
||||
logger.path(None) / "final-ckp.pth",
|
||||
logger,
|
||||
)
|
||||
|
||||
logger.log("-" * 200 + "\n")
|
||||
logger.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(".")
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
default="./outputs/lfna-synthetic/lfna-battle",
|
||||
help="The checkpoint directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--env_version",
|
||||
type=str,
|
||||
required=True,
|
||||
help="The synthetic enviornment version.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hidden_dim",
|
||||
type=int,
|
||||
default=16,
|
||||
help="The hidden dimension.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--layer_dim",
|
||||
type=int,
|
||||
default=16,
|
||||
help="The layer chunk dimension.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--time_dim",
|
||||
type=int,
|
||||
default=16,
|
||||
help="The timestamp dimension.",
|
||||
)
|
||||
#####
|
||||
parser.add_argument(
|
||||
"--lr",
|
||||
type=float,
|
||||
default=0.002,
|
||||
help="The initial learning rate for the optimizer (default is Adam)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--weight_decay",
|
||||
type=float,
|
||||
default=0.00001,
|
||||
help="The weight decay for the optimizer (default is Adam)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--meta_batch",
|
||||
type=int,
|
||||
default=64,
|
||||
help="The batch size for the meta-model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--sampler_enlarge",
|
||||
type=int,
|
||||
default=5,
|
||||
help="Enlarge the #iterations for an epoch",
|
||||
)
|
||||
parser.add_argument("--epochs", type=int, default=10000, help="The total #epochs.")
|
||||
parser.add_argument(
|
||||
"--refine_lr",
|
||||
type=float,
|
||||
default=0.001,
|
||||
help="The learning rate for the optimizer, during refine",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--refine_epochs", type=int, default=150, help="The final refine #epochs."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--early_stop_thresh",
|
||||
type=int,
|
||||
default=20,
|
||||
help="The #epochs for early stop.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--pretrain_early_stop_thresh",
|
||||
type=int,
|
||||
default=300,
|
||||
help="The #epochs for early stop.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--seq_length", type=int, default=10, help="The sequence length."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--workers", type=int, default=4, help="The number of workers in parallel."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default="cpu",
|
||||
help="",
|
||||
)
|
||||
# Random Seed
|
||||
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
||||
args = parser.parse_args()
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
assert args.save_dir is not None, "The save dir argument can not be None"
|
||||
args.save_dir = "{:}-bs{:}-d{:}_{:}_{:}-s{:}-lr{:}-wd{:}-e{:}-env{:}".format(
|
||||
args.save_dir,
|
||||
args.meta_batch,
|
||||
args.hidden_dim,
|
||||
args.layer_dim,
|
||||
args.time_dim,
|
||||
args.seq_length,
|
||||
args.lr,
|
||||
args.weight_decay,
|
||||
args.epochs,
|
||||
args.env_version,
|
||||
)
|
||||
main(args)
|
373
exps/GeMOSA/vis-synthetic.py
Normal file
373
exps/GeMOSA/vis-synthetic.py
Normal file
@@ -0,0 +1,373 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.02 #
|
||||
############################################################################
|
||||
# python exps/GMOA/vis-synthetic.py --env_version v1 #
|
||||
# python exps/GMOA/vis-synthetic.py --env_version v2 #
|
||||
############################################################################
|
||||
import os, sys, copy, random
|
||||
import torch
|
||||
import numpy as np
|
||||
import argparse
|
||||
from collections import OrderedDict, defaultdict
|
||||
from pathlib import Path
|
||||
from tqdm import tqdm
|
||||
from pprint import pprint
|
||||
|
||||
import matplotlib
|
||||
from matplotlib import cm
|
||||
|
||||
matplotlib.use("agg")
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.ticker as ticker
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / "..").resolve()
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
|
||||
from xautodl.models.xcore import get_model
|
||||
from xautodl.datasets.synthetic_core import get_synthetic_env
|
||||
from xautodl.procedures.metric_utils import MSEMetric
|
||||
|
||||
|
||||
def plot_scatter(cur_ax, xs, ys, color, alpha, linewidths, label=None):
|
||||
cur_ax.scatter([-100], [-100], color=color, linewidths=linewidths, label=label)
|
||||
cur_ax.scatter(xs, ys, color=color, alpha=alpha, linewidths=1.5, label=None)
|
||||
|
||||
|
||||
def draw_multi_fig(save_dir, timestamp, scatter_list, wh, fig_title=None):
|
||||
save_path = save_dir / "{:04d}".format(timestamp)
|
||||
# print('Plot the figure at timestamp-{:} into {:}'.format(timestamp, save_path))
|
||||
dpi, width, height = 40, wh[0], wh[1]
|
||||
figsize = width / float(dpi), height / float(dpi)
|
||||
LabelSize, LegendFontsize, font_gap = 80, 80, 5
|
||||
|
||||
fig = plt.figure(figsize=figsize)
|
||||
if fig_title is not None:
|
||||
fig.suptitle(
|
||||
fig_title, fontsize=LegendFontsize, fontweight="bold", x=0.5, y=0.92
|
||||
)
|
||||
|
||||
for idx, scatter_dict in enumerate(scatter_list):
|
||||
cur_ax = fig.add_subplot(len(scatter_list), 1, idx + 1)
|
||||
plot_scatter(
|
||||
cur_ax,
|
||||
scatter_dict["xaxis"],
|
||||
scatter_dict["yaxis"],
|
||||
scatter_dict["color"],
|
||||
scatter_dict["alpha"],
|
||||
scatter_dict["linewidths"],
|
||||
scatter_dict["label"],
|
||||
)
|
||||
cur_ax.set_xlabel("X", fontsize=LabelSize)
|
||||
cur_ax.set_ylabel("Y", rotation=0, fontsize=LabelSize)
|
||||
cur_ax.set_xlim(scatter_dict["xlim"][0], scatter_dict["xlim"][1])
|
||||
cur_ax.set_ylim(scatter_dict["ylim"][0], scatter_dict["ylim"][1])
|
||||
for tick in cur_ax.xaxis.get_major_ticks():
|
||||
tick.label.set_fontsize(LabelSize - font_gap)
|
||||
tick.label.set_rotation(10)
|
||||
for tick in cur_ax.yaxis.get_major_ticks():
|
||||
tick.label.set_fontsize(LabelSize - font_gap)
|
||||
cur_ax.legend(loc=1, fontsize=LegendFontsize)
|
||||
fig.savefig(str(save_path) + ".pdf", dpi=dpi, bbox_inches="tight", format="pdf")
|
||||
fig.savefig(str(save_path) + ".png", dpi=dpi, bbox_inches="tight", format="png")
|
||||
plt.close("all")
|
||||
|
||||
|
||||
def find_min(cur, others):
|
||||
if cur is None:
|
||||
return float(others)
|
||||
else:
|
||||
return float(min(cur, others))
|
||||
|
||||
|
||||
def find_max(cur, others):
|
||||
if cur is None:
|
||||
return float(others.max())
|
||||
else:
|
||||
return float(max(cur, others))
|
||||
|
||||
|
||||
def compare_cl(save_dir):
|
||||
save_dir = Path(str(save_dir))
|
||||
save_dir.mkdir(parents=True, exist_ok=True)
|
||||
dynamic_env, cl_function = create_example_v1(
|
||||
# timestamp_config=dict(num=200, min_timestamp=-1, max_timestamp=1.0),
|
||||
timestamp_config=dict(num=200),
|
||||
num_per_task=1000,
|
||||
)
|
||||
|
||||
models = dict()
|
||||
|
||||
cl_function.set_timestamp(0)
|
||||
cl_xaxis_min = None
|
||||
cl_xaxis_max = None
|
||||
|
||||
all_data = OrderedDict()
|
||||
|
||||
for idx, (timestamp, dataset) in enumerate(tqdm(dynamic_env, ncols=50)):
|
||||
xaxis_all = dataset[0][:, 0].numpy()
|
||||
yaxis_all = dataset[1][:, 0].numpy()
|
||||
current_data = dict()
|
||||
current_data["lfna_xaxis_all"] = xaxis_all
|
||||
current_data["lfna_yaxis_all"] = yaxis_all
|
||||
|
||||
# compute cl-min
|
||||
cl_xaxis_min = find_min(cl_xaxis_min, xaxis_all.mean() - xaxis_all.std())
|
||||
cl_xaxis_max = find_max(cl_xaxis_max, xaxis_all.mean() + xaxis_all.std())
|
||||
all_data[timestamp] = current_data
|
||||
|
||||
global_cl_xaxis_all = np.arange(cl_xaxis_min, cl_xaxis_max, step=0.1)
|
||||
global_cl_yaxis_all = cl_function.noise_call(global_cl_xaxis_all)
|
||||
|
||||
for idx, (timestamp, xdata) in enumerate(tqdm(all_data.items(), ncols=50)):
|
||||
scatter_list = []
|
||||
scatter_list.append(
|
||||
{
|
||||
"xaxis": xdata["lfna_xaxis_all"],
|
||||
"yaxis": xdata["lfna_yaxis_all"],
|
||||
"color": "k",
|
||||
"linewidths": 15,
|
||||
"alpha": 0.99,
|
||||
"xlim": (-6, 6),
|
||||
"ylim": (-40, 40),
|
||||
"label": "LFNA",
|
||||
}
|
||||
)
|
||||
|
||||
cur_cl_xaxis_min = cl_xaxis_min
|
||||
cur_cl_xaxis_max = cl_xaxis_min + (cl_xaxis_max - cl_xaxis_min) * (
|
||||
idx + 1
|
||||
) / len(all_data)
|
||||
cl_xaxis_all = np.arange(cur_cl_xaxis_min, cur_cl_xaxis_max, step=0.01)
|
||||
cl_yaxis_all = cl_function.noise_call(cl_xaxis_all, std=0.2)
|
||||
|
||||
scatter_list.append(
|
||||
{
|
||||
"xaxis": cl_xaxis_all,
|
||||
"yaxis": cl_yaxis_all,
|
||||
"color": "k",
|
||||
"linewidths": 15,
|
||||
"xlim": (round(cl_xaxis_min, 1), round(cl_xaxis_max, 1)),
|
||||
"ylim": (-20, 6),
|
||||
"alpha": 0.99,
|
||||
"label": "Continual Learning",
|
||||
}
|
||||
)
|
||||
|
||||
draw_multi_fig(
|
||||
save_dir,
|
||||
idx,
|
||||
scatter_list,
|
||||
wh=(2200, 1800),
|
||||
fig_title="Timestamp={:03d}".format(idx),
|
||||
)
|
||||
print("Save all figures into {:}".format(save_dir))
|
||||
save_dir = save_dir.resolve()
|
||||
base_cmd = (
|
||||
"ffmpeg -y -i {xdir}/%04d.png -vf fps=1 -vf scale=2200:1800 -vb 5000k".format(
|
||||
xdir=save_dir
|
||||
)
|
||||
)
|
||||
video_cmd = "{:} -pix_fmt yuv420p {xdir}/compare-cl.mp4".format(
|
||||
base_cmd, xdir=save_dir
|
||||
)
|
||||
print(video_cmd + "\n")
|
||||
os.system(video_cmd)
|
||||
os.system(
|
||||
"{:} -pix_fmt yuv420p {xdir}/compare-cl.webm".format(base_cmd, xdir=save_dir)
|
||||
)
|
||||
|
||||
|
||||
def visualize_env(save_dir, version):
|
||||
save_dir = Path(str(save_dir))
|
||||
for substr in ("pdf", "png"):
|
||||
sub_save_dir = save_dir / substr
|
||||
sub_save_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
dynamic_env = get_synthetic_env(version=version)
|
||||
allxs, allys = [], []
|
||||
for idx, (timestamp, (allx, ally)) in enumerate(tqdm(dynamic_env, ncols=50)):
|
||||
allxs.append(allx)
|
||||
allys.append(ally)
|
||||
allxs, allys = torch.cat(allxs).view(-1), torch.cat(allys).view(-1)
|
||||
for idx, (timestamp, (allx, ally)) in enumerate(tqdm(dynamic_env, ncols=50)):
|
||||
dpi, width, height = 30, 1800, 1400
|
||||
figsize = width / float(dpi), height / float(dpi)
|
||||
LabelSize, LegendFontsize, font_gap = 80, 80, 5
|
||||
fig = plt.figure(figsize=figsize)
|
||||
|
||||
cur_ax = fig.add_subplot(1, 1, 1)
|
||||
allx, ally = allx[:, 0].numpy(), ally[:, 0].numpy()
|
||||
plot_scatter(cur_ax, allx, ally, "k", 0.99, 15, "timestamp={:05d}".format(idx))
|
||||
cur_ax.set_xlabel("X", fontsize=LabelSize)
|
||||
cur_ax.set_ylabel("Y", rotation=0, fontsize=LabelSize)
|
||||
for tick in cur_ax.xaxis.get_major_ticks():
|
||||
tick.label.set_fontsize(LabelSize - font_gap)
|
||||
tick.label.set_rotation(10)
|
||||
for tick in cur_ax.yaxis.get_major_ticks():
|
||||
tick.label.set_fontsize(LabelSize - font_gap)
|
||||
cur_ax.set_xlim(round(allxs.min().item(), 1), round(allxs.max().item(), 1))
|
||||
cur_ax.set_ylim(round(allys.min().item(), 1), round(allys.max().item(), 1))
|
||||
cur_ax.legend(loc=1, fontsize=LegendFontsize)
|
||||
|
||||
pdf_save_path = save_dir / "pdf" / "v{:}-{:05d}.pdf".format(version, idx)
|
||||
fig.savefig(str(pdf_save_path), dpi=dpi, bbox_inches="tight", format="pdf")
|
||||
png_save_path = save_dir / "png" / "v{:}-{:05d}.png".format(version, idx)
|
||||
fig.savefig(str(png_save_path), dpi=dpi, bbox_inches="tight", format="png")
|
||||
plt.close("all")
|
||||
save_dir = save_dir.resolve()
|
||||
base_cmd = "ffmpeg -y -i {xdir}/v{version}-%05d.png -vf scale=1800:1400 -pix_fmt yuv420p -vb 5000k".format(
|
||||
xdir=save_dir / "png", version=version
|
||||
)
|
||||
print(base_cmd)
|
||||
os.system("{:} {xdir}/env-{ver}.mp4".format(base_cmd, xdir=save_dir, ver=version))
|
||||
os.system("{:} {xdir}/env-{ver}.webm".format(base_cmd, xdir=save_dir, ver=version))
|
||||
|
||||
|
||||
def compare_algs(save_dir, version, alg_dir="./outputs/lfna-synthetic"):
|
||||
save_dir = Path(str(save_dir))
|
||||
for substr in ("pdf", "png"):
|
||||
sub_save_dir = save_dir / substr
|
||||
sub_save_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
dpi, width, height = 30, 3200, 2000
|
||||
figsize = width / float(dpi), height / float(dpi)
|
||||
LabelSize, LegendFontsize, font_gap = 80, 80, 5
|
||||
|
||||
dynamic_env = get_synthetic_env(mode=None, version=version)
|
||||
allxs, allys = [], []
|
||||
for idx, (timestamp, (allx, ally)) in enumerate(tqdm(dynamic_env, ncols=50)):
|
||||
allxs.append(allx)
|
||||
allys.append(ally)
|
||||
allxs, allys = torch.cat(allxs).view(-1), torch.cat(allys).view(-1)
|
||||
|
||||
alg_name2dir = OrderedDict()
|
||||
# alg_name2dir["Supervised Learning (History Data)"] = "use-all-past-data"
|
||||
# alg_name2dir["MAML"] = "use-maml-s1"
|
||||
# alg_name2dir["LFNA (fix init)"] = "lfna-fix-init"
|
||||
if version == "v1":
|
||||
# alg_name2dir["Optimal"] = "use-same-timestamp"
|
||||
alg_name2dir[
|
||||
"GMOA"
|
||||
] = "lfna-battle-bs128-d16_16_16-s16-lr0.002-wd1e-05-e10000-envv1"
|
||||
else:
|
||||
raise ValueError("Invalid version: {:}".format(version))
|
||||
alg_name2all_containers = OrderedDict()
|
||||
for idx_alg, (alg, xdir) in enumerate(alg_name2dir.items()):
|
||||
ckp_path = Path(alg_dir) / str(xdir) / "final-ckp.pth"
|
||||
xdata = torch.load(ckp_path, map_location="cpu")
|
||||
alg_name2all_containers[alg] = xdata["w_containers"]
|
||||
# load the basic model
|
||||
model = get_model(
|
||||
dict(model_type="norm_mlp"),
|
||||
input_dim=1,
|
||||
output_dim=1,
|
||||
hidden_dims=[16] * 2,
|
||||
act_cls="gelu",
|
||||
norm_cls="layer_norm_1d",
|
||||
)
|
||||
|
||||
alg2xs, alg2ys = defaultdict(list), defaultdict(list)
|
||||
colors = ["r", "g", "b", "m", "y"]
|
||||
|
||||
linewidths, skip = 10, 5
|
||||
for idx, (timestamp, (ori_allx, ori_ally)) in enumerate(
|
||||
tqdm(dynamic_env, ncols=50)
|
||||
):
|
||||
if idx <= skip:
|
||||
continue
|
||||
fig = plt.figure(figsize=figsize)
|
||||
cur_ax = fig.add_subplot(2, 1, 1)
|
||||
|
||||
# the data
|
||||
allx, ally = ori_allx[:, 0].numpy(), ori_ally[:, 0].numpy()
|
||||
plot_scatter(cur_ax, allx, ally, "k", 0.99, linewidths, "Raw Data")
|
||||
|
||||
for idx_alg, (alg, xdir) in enumerate(alg_name2dir.items()):
|
||||
with torch.no_grad():
|
||||
predicts = model.forward_with_container(
|
||||
ori_allx, alg_name2all_containers[alg][idx]
|
||||
)
|
||||
predicts = predicts.cpu()
|
||||
# keep data
|
||||
metric = MSEMetric()
|
||||
metric(predicts, ori_ally)
|
||||
predicts = predicts.view(-1).numpy()
|
||||
alg2xs[alg].append(idx)
|
||||
alg2ys[alg].append(metric.get_info()["mse"])
|
||||
plot_scatter(cur_ax, allx, predicts, colors[idx_alg], 0.99, linewidths, alg)
|
||||
|
||||
cur_ax.set_xlabel("X", fontsize=LabelSize)
|
||||
cur_ax.set_ylabel("Y", rotation=0, fontsize=LabelSize)
|
||||
for tick in cur_ax.xaxis.get_major_ticks():
|
||||
tick.label.set_fontsize(LabelSize - font_gap)
|
||||
tick.label.set_rotation(10)
|
||||
for tick in cur_ax.yaxis.get_major_ticks():
|
||||
tick.label.set_fontsize(LabelSize - font_gap)
|
||||
cur_ax.set_xlim(round(allxs.min().item(), 1), round(allxs.max().item(), 1))
|
||||
cur_ax.set_ylim(round(allys.min().item(), 1), round(allys.max().item(), 1))
|
||||
cur_ax.legend(loc=1, fontsize=LegendFontsize)
|
||||
|
||||
# the trajectory data
|
||||
cur_ax = fig.add_subplot(2, 1, 2)
|
||||
for idx_alg, (alg, xdir) in enumerate(alg_name2dir.items()):
|
||||
# plot_scatter(cur_ax, alg2xs[alg], alg2ys[alg], olors[idx_alg], 0.99, linewidths, alg)
|
||||
cur_ax.plot(
|
||||
alg2xs[alg],
|
||||
alg2ys[alg],
|
||||
color=colors[idx_alg],
|
||||
linestyle="-",
|
||||
linewidth=5,
|
||||
label=alg,
|
||||
)
|
||||
cur_ax.legend(loc=1, fontsize=LegendFontsize)
|
||||
|
||||
cur_ax.set_xlabel("Timestamp", fontsize=LabelSize)
|
||||
cur_ax.set_ylabel("MSE", fontsize=LabelSize)
|
||||
for tick in cur_ax.xaxis.get_major_ticks():
|
||||
tick.label.set_fontsize(LabelSize - font_gap)
|
||||
tick.label.set_rotation(10)
|
||||
for tick in cur_ax.yaxis.get_major_ticks():
|
||||
tick.label.set_fontsize(LabelSize - font_gap)
|
||||
cur_ax.set_xlim(1, len(dynamic_env))
|
||||
cur_ax.set_ylim(0, 10)
|
||||
cur_ax.legend(loc=1, fontsize=LegendFontsize)
|
||||
|
||||
pdf_save_path = save_dir / "pdf" / "v{:}-{:05d}.pdf".format(version, idx - skip)
|
||||
fig.savefig(str(pdf_save_path), dpi=dpi, bbox_inches="tight", format="pdf")
|
||||
png_save_path = save_dir / "png" / "v{:}-{:05d}.png".format(version, idx - skip)
|
||||
fig.savefig(str(png_save_path), dpi=dpi, bbox_inches="tight", format="png")
|
||||
plt.close("all")
|
||||
save_dir = save_dir.resolve()
|
||||
base_cmd = "ffmpeg -y -i {xdir}/v{ver}-%05d.png -vf scale={w}:{h} -pix_fmt yuv420p -vb 5000k".format(
|
||||
xdir=save_dir / "png", w=width, h=height, ver=version
|
||||
)
|
||||
os.system(
|
||||
"{:} {xdir}/com-alg-{ver}.mp4".format(base_cmd, xdir=save_dir, ver=version)
|
||||
)
|
||||
os.system(
|
||||
"{:} {xdir}/com-alg-{ver}.webm".format(base_cmd, xdir=save_dir, ver=version)
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
parser = argparse.ArgumentParser("Visualize synthetic data.")
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
default="./outputs/vis-synthetic",
|
||||
help="The save directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--env_version",
|
||||
type=str,
|
||||
required=True,
|
||||
help="The synthetic enviornment version.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
# visualize_env(os.path.join(args.save_dir, "vis-env"), "v1")
|
||||
# visualize_env(os.path.join(args.save_dir, "vis-env"), "v2")
|
||||
compare_algs(os.path.join(args.save_dir, "compare-alg"), args.env_version)
|
||||
# compare_cl(os.path.join(args.save_dir, "compare-cl"))
|
Reference in New Issue
Block a user