Reformulate the synthetic codes
This commit is contained in:
206
lib/datasets/math_base_funcs.py
Normal file
206
lib/datasets/math_base_funcs.py
Normal file
@@ -0,0 +1,206 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
|
||||
#####################################################
|
||||
import math
|
||||
import abc
|
||||
import numpy as np
|
||||
from typing import Optional
|
||||
import torch
|
||||
import torch.utils.data as data
|
||||
|
||||
|
||||
class FitFunc(abc.ABC):
|
||||
"""The fit function that outputs f(x) = a * x^2 + b * x + c."""
|
||||
|
||||
def __init__(self, freedom: int, list_of_points=None):
|
||||
self._params = dict()
|
||||
for i in range(freedom):
|
||||
self._params[i] = None
|
||||
self._freedom = freedom
|
||||
if list_of_points is not None:
|
||||
self.fit(list_of_points)
|
||||
|
||||
def set(self, _params):
|
||||
self._params = copy.deepcopy(_params)
|
||||
|
||||
def check_valid(self):
|
||||
for key, value in self._params.items():
|
||||
if value is None:
|
||||
raise ValueError("The {:} is None".format(key))
|
||||
|
||||
@abc.abstractmethod
|
||||
def __getitem__(self, x):
|
||||
raise NotImplementedError
|
||||
|
||||
@abc.abstractmethod
|
||||
def _getitem(self, x):
|
||||
raise NotImplementedError
|
||||
|
||||
def fit(
|
||||
self,
|
||||
list_of_points,
|
||||
max_iter=900,
|
||||
lr_max=1.0,
|
||||
verbose=False,
|
||||
):
|
||||
with torch.no_grad():
|
||||
data = torch.Tensor(list_of_points).type(torch.float32)
|
||||
assert data.ndim == 2 and data.size(1) == 2, "Invalid shape : {:}".format(
|
||||
data.shape
|
||||
)
|
||||
x, y = data[:, 0], data[:, 1]
|
||||
weights = torch.nn.Parameter(torch.Tensor(self._freedom))
|
||||
torch.nn.init.normal_(weights, mean=0.0, std=1.0)
|
||||
optimizer = torch.optim.Adam([weights], lr=lr_max, amsgrad=True)
|
||||
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
||||
optimizer,
|
||||
milestones=[
|
||||
int(max_iter * 0.25),
|
||||
int(max_iter * 0.5),
|
||||
int(max_iter * 0.75),
|
||||
],
|
||||
gamma=0.1,
|
||||
)
|
||||
if verbose:
|
||||
print("The optimizer: {:}".format(optimizer))
|
||||
|
||||
best_loss = None
|
||||
for _iter in range(max_iter):
|
||||
y_hat = self._getitem(x, weights)
|
||||
loss = torch.mean(torch.abs(y - y_hat))
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
if verbose:
|
||||
print(
|
||||
"In the fit, loss at the {:02d}/{:02d}-th iter is {:}".format(
|
||||
_iter, max_iter, loss.item()
|
||||
)
|
||||
)
|
||||
# Update the params
|
||||
if best_loss is None or best_loss > loss.item():
|
||||
best_loss = loss.item()
|
||||
for i in range(self._freedom):
|
||||
self._params[i] = weights[i].item()
|
||||
|
||||
def __repr__(self):
|
||||
return "{name}(freedom={freedom})".format(
|
||||
name=self.__class__.__name__, freedom=freedom
|
||||
)
|
||||
|
||||
|
||||
class QuadraticFunc(FitFunc):
|
||||
"""The quadratic function that outputs f(x) = a * x^2 + b * x + c."""
|
||||
|
||||
def __init__(self, list_of_points=None):
|
||||
super(QuadraticFunc, self).__init__(3, list_of_points)
|
||||
|
||||
def __getitem__(self, x):
|
||||
self.check_valid()
|
||||
return self._params[0] * x * x + self._params[1] * x + self._params[2]
|
||||
|
||||
def _getitem(self, x, weights):
|
||||
return weights[0] * x * x + weights[1] * x + weights[2]
|
||||
|
||||
def __repr__(self):
|
||||
return "{name}(y = {a} * x^2 + {b} * x + {c})".format(
|
||||
name=self.__class__.__name__,
|
||||
a=self._params[0],
|
||||
b=self._params[1],
|
||||
c=self._params[2],
|
||||
)
|
||||
|
||||
|
||||
class CubicFunc(FitFunc):
|
||||
"""The cubic function that outputs f(x) = a * x^3 + b * x^2 + c * x + d."""
|
||||
|
||||
def __init__(self, list_of_points=None):
|
||||
super(CubicFunc, self).__init__(4, list_of_points)
|
||||
|
||||
def __getitem__(self, x):
|
||||
self.check_valid()
|
||||
return (
|
||||
self._params[0] * x ** 3
|
||||
+ self._params[1] * x ** 2
|
||||
+ self._params[2] * x
|
||||
+ self._params[3]
|
||||
)
|
||||
|
||||
def _getitem(self, x, weights):
|
||||
return weights[0] * x ** 3 + weights[1] * x ** 2 + weights[2] * x + weights[3]
|
||||
|
||||
def __repr__(self):
|
||||
return "{name}(y = {a} * x^3 + {b} * x^2 + {c} * x + {d})".format(
|
||||
name=self.__class__.__name__,
|
||||
a=self._params[0],
|
||||
b=self._params[1],
|
||||
c=self._params[2],
|
||||
d=self._params[3],
|
||||
)
|
||||
|
||||
|
||||
class QuarticFunc(FitFunc):
|
||||
"""The quartic function that outputs f(x) = a * x^4 + b * x^3 + c * x^2 + d * x + e."""
|
||||
|
||||
def __init__(self, list_of_points=None):
|
||||
super(QuarticFunc, self).__init__(5, list_of_points)
|
||||
|
||||
def __getitem__(self, x):
|
||||
self.check_valid()
|
||||
return (
|
||||
self._params[0] * x ** 4
|
||||
+ self._params[1] * x ** 3
|
||||
+ self._params[2] * x ** 2
|
||||
+ self._params[3] * x
|
||||
+ self._params[4]
|
||||
)
|
||||
|
||||
def _getitem(self, x, weights):
|
||||
return (
|
||||
weights[0] * x ** 4
|
||||
+ weights[1] * x ** 3
|
||||
+ weights[2] * x ** 2
|
||||
+ weights[3] * x
|
||||
+ weights[4]
|
||||
)
|
||||
|
||||
def __repr__(self):
|
||||
return "{name}(y = {a} * x^4 + {b} * x^3 + {c} * x^2 + {d} * x + {e})".format(
|
||||
name=self.__class__.__name__,
|
||||
a=self._params[0],
|
||||
b=self._params[1],
|
||||
c=self._params[2],
|
||||
d=self._params[3],
|
||||
e=self._params[3],
|
||||
)
|
||||
|
||||
|
||||
class DynamicQuadraticFunc(FitFunc):
|
||||
"""The dynamic quadratic function that outputs f(x) = a * x^2 + b * x + c."""
|
||||
|
||||
def __init__(self, list_of_points=None):
|
||||
super(DynamicQuadraticFunc, self).__init__(3, list_of_points)
|
||||
self._timestamp = None
|
||||
|
||||
def __getitem__(self, x):
|
||||
self.check_valid()
|
||||
return (
|
||||
self._params[0][self._timestamp] * x * x
|
||||
+ self._params[1][self._timestamp] * x
|
||||
+ self._params[2][self._timestamp]
|
||||
)
|
||||
|
||||
def _getitem(self, x, weights):
|
||||
raise NotImplementedError
|
||||
|
||||
def set_timestamp(self, timestamp):
|
||||
self._timestamp = timestamp
|
||||
|
||||
def __repr__(self):
|
||||
return "{name}(y = {a} * x^2 + {b} * x + {c})".format(
|
||||
name=self.__class__.__name__,
|
||||
a=self._params[0],
|
||||
b=self._params[1],
|
||||
c=self._params[2],
|
||||
)
|
Reference in New Issue
Block a user