Update weight watcher codes
This commit is contained in:
@@ -90,9 +90,9 @@ def visualize_sss_info(api, dataset, vis_save_dir):
|
||||
print ('Do not find cache file : {:}'.format(cache_file_path))
|
||||
params, flops, train_accs, valid_accs, test_accs = [], [], [], [], []
|
||||
for index in range(len(api)):
|
||||
info = api.get_cost_info(index, dataset)
|
||||
params.append(info['params'])
|
||||
flops.append(info['flops'])
|
||||
cost_info = api.get_cost_info(index, dataset, hp='90')
|
||||
params.append(cost_info['params'])
|
||||
flops.append(cost_info['flops'])
|
||||
# accuracy
|
||||
info = api.get_more_info(index, dataset, hp='90', is_random=False)
|
||||
train_accs.append(info['train-accuracy'])
|
||||
@@ -178,9 +178,9 @@ def visualize_tss_info(api, dataset, vis_save_dir):
|
||||
print ('Do not find cache file : {:}'.format(cache_file_path))
|
||||
params, flops, train_accs, valid_accs, test_accs = [], [], [], [], []
|
||||
for index in range(len(api)):
|
||||
info = api.get_cost_info(index, dataset)
|
||||
params.append(info['params'])
|
||||
flops.append(info['flops'])
|
||||
cost_info = api.get_cost_info(index, dataset, hp='12')
|
||||
params.append(cost_info['params'])
|
||||
flops.append(cost_info['flops'])
|
||||
# accuracy
|
||||
info = api.get_more_info(index, dataset, hp='200', is_random=False)
|
||||
train_accs.append(info['train-accuracy'])
|
||||
@@ -190,6 +190,7 @@ def visualize_tss_info(api, dataset, vis_save_dir):
|
||||
valid_accs.append(info['valid-accuracy'])
|
||||
else:
|
||||
valid_accs.append(info['valid-accuracy'])
|
||||
print('')
|
||||
info = {'params': params, 'flops': flops, 'train_accs': train_accs, 'valid_accs': valid_accs, 'test_accs': test_accs}
|
||||
torch.save(info, cache_file_path)
|
||||
else:
|
||||
|
@@ -1,113 +0,0 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 #
|
||||
###############################################################################################
|
||||
# Before run these commands, the files must be properly put.
|
||||
# python exps/NAS-Bench-201/test-weights.py --base_path $HOME/.torch/NAS-Bench-201-v1_0-e61699
|
||||
# python exps/NAS-Bench-201/test-weights.py --base_path $HOME/.torch/NAS-Bench-201-v1_1-096897 --dataset cifar10-valid --use_12 1 --use_valid 1
|
||||
# bash ./scripts-search/NAS-Bench-201/test-weights.sh cifar10-valid 1
|
||||
###############################################################################################
|
||||
import os, gc, sys, math, argparse, psutil
|
||||
import numpy as np
|
||||
import torch
|
||||
from pathlib import Path
|
||||
from collections import OrderedDict
|
||||
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
||||
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
||||
from nas_201_api import NASBench201API as API
|
||||
from log_utils import time_string
|
||||
from models import get_cell_based_tiny_net
|
||||
from utils import weight_watcher
|
||||
|
||||
|
||||
def get_cor(A, B):
|
||||
return float(np.corrcoef(A, B)[0,1])
|
||||
|
||||
|
||||
def tostr(accdict, norms):
|
||||
xstr = []
|
||||
for key, accs in accdict.items():
|
||||
cor = get_cor(accs, norms)
|
||||
xstr.append('{:}: {:.3f}'.format(key, cor))
|
||||
return ' '.join(xstr)
|
||||
|
||||
|
||||
def evaluate(api, weight_dir, data: str, use_12epochs_result: bool):
|
||||
print('\nEvaluate dataset={:}'.format(data))
|
||||
norms, process = [], psutil.Process(os.getpid())
|
||||
final_val_accs = OrderedDict({'cifar10': [], 'cifar100': [], 'ImageNet16-120': []})
|
||||
final_test_accs = OrderedDict({'cifar10': [], 'cifar100': [], 'ImageNet16-120': []})
|
||||
for idx in range(len(api)):
|
||||
# info = api.get_more_info(idx, data, use_12epochs_result=use_12epochs_result, is_random=False)
|
||||
for key in ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120']:
|
||||
info = api.get_more_info(idx, key, use_12epochs_result=False, is_random=False)
|
||||
if key == 'cifar10-valid':
|
||||
final_val_accs['cifar10'].append(info['valid-accuracy'])
|
||||
elif key == 'cifar10':
|
||||
final_test_accs['cifar10'].append(info['test-accuracy'])
|
||||
else:
|
||||
final_test_accs[key].append(info['test-accuracy'])
|
||||
final_val_accs[key].append(info['valid-accuracy'])
|
||||
config = api.get_net_config(idx, data)
|
||||
net = get_cell_based_tiny_net(config)
|
||||
api.reload(weight_dir, idx)
|
||||
params = api.get_net_param(idx, data, None, use_12epochs_result=use_12epochs_result)
|
||||
cur_norms = []
|
||||
for seed, param in params.items():
|
||||
with torch.no_grad():
|
||||
net.load_state_dict(param)
|
||||
_, summary = weight_watcher.analyze(net, alphas=False)
|
||||
cur_norms.append(-summary['lognorm'])
|
||||
cur_norm = float(np.mean(cur_norms))
|
||||
if math.isnan(cur_norm):
|
||||
print (' IGNORE {:} due to nan.'.format(idx))
|
||||
continue
|
||||
norms.append(cur_norm)
|
||||
api.clear_params(idx, None)
|
||||
if idx % 200 == 199 or idx + 1 == len(api):
|
||||
head = '{:05d}/{:05d}'.format(idx, len(api))
|
||||
stem_val = tostr(final_val_accs, norms)
|
||||
stem_test = tostr(final_test_accs, norms)
|
||||
print('{:} {:} {:} with {:} epochs ({:.2f} MB memory)'.format(time_string(), head, data, 12 if use_12epochs_result else 200, process.memory_info().rss / 1e6))
|
||||
print(' [Valid] -->> {:}'.format(stem_val))
|
||||
print(' [Test.] -->> {:}'.format(stem_test))
|
||||
gc.collect()
|
||||
|
||||
|
||||
def main(meta_file: str, weight_dir, save_dir, xdata, use_12epochs_result):
|
||||
api = API(meta_file)
|
||||
datasets = ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120']
|
||||
print(time_string() + ' ' + '='*50)
|
||||
for data in datasets:
|
||||
nums = api.statistics(data, True)
|
||||
total = sum([k*v for k, v in nums.items()])
|
||||
print('Using 012 epochs, trained on {:20s} : {:} trials in total ({:}).'.format(data, total, nums))
|
||||
print(time_string() + ' ' + '='*50)
|
||||
for data in datasets:
|
||||
nums = api.statistics(data, False)
|
||||
total = sum([k*v for k, v in nums.items()])
|
||||
print('Using 200 epochs, trained on {:20s} : {:} trials in total ({:}).'.format(data, total, nums))
|
||||
print(time_string() + ' ' + '='*50)
|
||||
|
||||
#evaluate(api, weight_dir, 'cifar10-valid', False, True)
|
||||
evaluate(api, weight_dir, xdata, use_12epochs_result)
|
||||
|
||||
print('{:} finish this test.'.format(time_string()))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser("Analysis of NAS-Bench-201")
|
||||
parser.add_argument('--save_dir', type=str, default='./output/search-cell-nas-bench-201/visuals', help='The base-name of folder to save checkpoints and log.')
|
||||
parser.add_argument('--base_path', type=str, default=None, help='The path to the NAS-Bench-201 benchmark file and weight dir.')
|
||||
parser.add_argument('--dataset' , type=str, default=None, help='.')
|
||||
parser.add_argument('--use_12' , type=int, default=None, help='.')
|
||||
args = parser.parse_args()
|
||||
|
||||
save_dir = Path(args.save_dir)
|
||||
save_dir.mkdir(parents=True, exist_ok=True)
|
||||
meta_file = Path(args.base_path + '.pth')
|
||||
weight_dir = Path(args.base_path + '-archive')
|
||||
assert meta_file.exists(), 'invalid path for api : {:}'.format(meta_file)
|
||||
assert weight_dir.exists() and weight_dir.is_dir(), 'invalid path for weight dir : {:}'.format(weight_dir)
|
||||
|
||||
main(str(meta_file), weight_dir, save_dir, args.dataset, bool(args.use_12))
|
||||
|
Reference in New Issue
Block a user