Add int search space

This commit is contained in:
D-X-Y
2021-03-18 16:02:55 +08:00
parent ece6ac5f41
commit 63c8bb9bc8
67 changed files with 5150 additions and 1474 deletions

View File

@@ -21,149 +21,209 @@ import torch.nn.functional as F
def drop_block_2d(
x, drop_prob: float = 0.1, block_size: int = 7, gamma_scale: float = 1.0,
with_noise: bool = False, inplace: bool = False, batchwise: bool = False):
""" DropBlock. See https://arxiv.org/pdf/1810.12890.pdf
x,
drop_prob: float = 0.1,
block_size: int = 7,
gamma_scale: float = 1.0,
with_noise: bool = False,
inplace: bool = False,
batchwise: bool = False,
):
"""DropBlock. See https://arxiv.org/pdf/1810.12890.pdf
DropBlock with an experimental gaussian noise option. This layer has been tested on a few training
runs with success, but needs further validation and possibly optimization for lower runtime impact.
"""
B, C, H, W = x.shape
total_size = W * H
clipped_block_size = min(block_size, min(W, H))
# seed_drop_rate, the gamma parameter
gamma = gamma_scale * drop_prob * total_size / clipped_block_size ** 2 / (
(W - block_size + 1) * (H - block_size + 1))
DropBlock with an experimental gaussian noise option. This layer has been tested on a few training
runs with success, but needs further validation and possibly optimization for lower runtime impact.
"""
B, C, H, W = x.shape
total_size = W * H
clipped_block_size = min(block_size, min(W, H))
# seed_drop_rate, the gamma parameter
gamma = (
gamma_scale
* drop_prob
* total_size
/ clipped_block_size ** 2
/ ((W - block_size + 1) * (H - block_size + 1))
)
# Forces the block to be inside the feature map.
w_i, h_i = torch.meshgrid(torch.arange(W).to(x.device), torch.arange(H).to(x.device))
valid_block = ((w_i >= clipped_block_size // 2) & (w_i < W - (clipped_block_size - 1) // 2)) & \
((h_i >= clipped_block_size // 2) & (h_i < H - (clipped_block_size - 1) // 2))
valid_block = torch.reshape(valid_block, (1, 1, H, W)).to(dtype=x.dtype)
# Forces the block to be inside the feature map.
w_i, h_i = torch.meshgrid(
torch.arange(W).to(x.device), torch.arange(H).to(x.device)
)
valid_block = (
(w_i >= clipped_block_size // 2) & (w_i < W - (clipped_block_size - 1) // 2)
) & ((h_i >= clipped_block_size // 2) & (h_i < H - (clipped_block_size - 1) // 2))
valid_block = torch.reshape(valid_block, (1, 1, H, W)).to(dtype=x.dtype)
if batchwise:
# one mask for whole batch, quite a bit faster
uniform_noise = torch.rand((1, C, H, W), dtype=x.dtype, device=x.device)
else:
uniform_noise = torch.rand_like(x)
block_mask = ((2 - gamma - valid_block + uniform_noise) >= 1).to(dtype=x.dtype)
block_mask = -F.max_pool2d(
-block_mask,
kernel_size=clipped_block_size, # block_size,
stride=1,
padding=clipped_block_size // 2)
if with_noise:
normal_noise = torch.randn((1, C, H, W), dtype=x.dtype, device=x.device) if batchwise else torch.randn_like(x)
if inplace:
x.mul_(block_mask).add_(normal_noise * (1 - block_mask))
if batchwise:
# one mask for whole batch, quite a bit faster
uniform_noise = torch.rand((1, C, H, W), dtype=x.dtype, device=x.device)
else:
x = x * block_mask + normal_noise * (1 - block_mask)
else:
normalize_scale = (block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-7)).to(x.dtype)
if inplace:
x.mul_(block_mask * normalize_scale)
uniform_noise = torch.rand_like(x)
block_mask = ((2 - gamma - valid_block + uniform_noise) >= 1).to(dtype=x.dtype)
block_mask = -F.max_pool2d(
-block_mask,
kernel_size=clipped_block_size, # block_size,
stride=1,
padding=clipped_block_size // 2,
)
if with_noise:
normal_noise = (
torch.randn((1, C, H, W), dtype=x.dtype, device=x.device)
if batchwise
else torch.randn_like(x)
)
if inplace:
x.mul_(block_mask).add_(normal_noise * (1 - block_mask))
else:
x = x * block_mask + normal_noise * (1 - block_mask)
else:
x = x * block_mask * normalize_scale
return x
normalize_scale = (
block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-7)
).to(x.dtype)
if inplace:
x.mul_(block_mask * normalize_scale)
else:
x = x * block_mask * normalize_scale
return x
def drop_block_fast_2d(
x: torch.Tensor, drop_prob: float = 0.1, block_size: int = 7,
gamma_scale: float = 1.0, with_noise: bool = False, inplace: bool = False, batchwise: bool = False):
""" DropBlock. See https://arxiv.org/pdf/1810.12890.pdf
x: torch.Tensor,
drop_prob: float = 0.1,
block_size: int = 7,
gamma_scale: float = 1.0,
with_noise: bool = False,
inplace: bool = False,
batchwise: bool = False,
):
"""DropBlock. See https://arxiv.org/pdf/1810.12890.pdf
DropBlock with an experimental gaussian noise option. Simplied from above without concern for valid
block mask at edges.
"""
B, C, H, W = x.shape
total_size = W * H
clipped_block_size = min(block_size, min(W, H))
gamma = gamma_scale * drop_prob * total_size / clipped_block_size ** 2 / (
(W - block_size + 1) * (H - block_size + 1))
DropBlock with an experimental gaussian noise option. Simplied from above without concern for valid
block mask at edges.
"""
B, C, H, W = x.shape
total_size = W * H
clipped_block_size = min(block_size, min(W, H))
gamma = (
gamma_scale
* drop_prob
* total_size
/ clipped_block_size ** 2
/ ((W - block_size + 1) * (H - block_size + 1))
)
if batchwise:
# one mask for whole batch, quite a bit faster
block_mask = torch.rand((1, C, H, W), dtype=x.dtype, device=x.device) < gamma
else:
# mask per batch element
block_mask = torch.rand_like(x) < gamma
block_mask = F.max_pool2d(
block_mask.to(x.dtype), kernel_size=clipped_block_size, stride=1, padding=clipped_block_size // 2)
if with_noise:
normal_noise = torch.randn((1, C, H, W), dtype=x.dtype, device=x.device) if batchwise else torch.randn_like(x)
if inplace:
x.mul_(1. - block_mask).add_(normal_noise * block_mask)
if batchwise:
# one mask for whole batch, quite a bit faster
block_mask = torch.rand((1, C, H, W), dtype=x.dtype, device=x.device) < gamma
else:
x = x * (1. - block_mask) + normal_noise * block_mask
else:
block_mask = 1 - block_mask
normalize_scale = (block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-7)).to(dtype=x.dtype)
if inplace:
x.mul_(block_mask * normalize_scale)
# mask per batch element
block_mask = torch.rand_like(x) < gamma
block_mask = F.max_pool2d(
block_mask.to(x.dtype),
kernel_size=clipped_block_size,
stride=1,
padding=clipped_block_size // 2,
)
if with_noise:
normal_noise = (
torch.randn((1, C, H, W), dtype=x.dtype, device=x.device)
if batchwise
else torch.randn_like(x)
)
if inplace:
x.mul_(1.0 - block_mask).add_(normal_noise * block_mask)
else:
x = x * (1.0 - block_mask) + normal_noise * block_mask
else:
x = x * block_mask * normalize_scale
return x
block_mask = 1 - block_mask
normalize_scale = (
block_mask.numel() / block_mask.to(dtype=torch.float32).sum().add(1e-7)
).to(dtype=x.dtype)
if inplace:
x.mul_(block_mask * normalize_scale)
else:
x = x * block_mask * normalize_scale
return x
class DropBlock2d(nn.Module):
""" DropBlock. See https://arxiv.org/pdf/1810.12890.pdf
"""
def __init__(self,
drop_prob=0.1,
block_size=7,
gamma_scale=1.0,
with_noise=False,
inplace=False,
batchwise=False,
fast=True):
super(DropBlock2d, self).__init__()
self.drop_prob = drop_prob
self.gamma_scale = gamma_scale
self.block_size = block_size
self.with_noise = with_noise
self.inplace = inplace
self.batchwise = batchwise
self.fast = fast # FIXME finish comparisons of fast vs not
"""DropBlock. See https://arxiv.org/pdf/1810.12890.pdf"""
def forward(self, x):
if not self.training or not self.drop_prob:
return x
if self.fast:
return drop_block_fast_2d(
x, self.drop_prob, self.block_size, self.gamma_scale, self.with_noise, self.inplace, self.batchwise)
else:
return drop_block_2d(
x, self.drop_prob, self.block_size, self.gamma_scale, self.with_noise, self.inplace, self.batchwise)
def __init__(
self,
drop_prob=0.1,
block_size=7,
gamma_scale=1.0,
with_noise=False,
inplace=False,
batchwise=False,
fast=True,
):
super(DropBlock2d, self).__init__()
self.drop_prob = drop_prob
self.gamma_scale = gamma_scale
self.block_size = block_size
self.with_noise = with_noise
self.inplace = inplace
self.batchwise = batchwise
self.fast = fast # FIXME finish comparisons of fast vs not
def forward(self, x):
if not self.training or not self.drop_prob:
return x
if self.fast:
return drop_block_fast_2d(
x,
self.drop_prob,
self.block_size,
self.gamma_scale,
self.with_noise,
self.inplace,
self.batchwise,
)
else:
return drop_block_2d(
x,
self.drop_prob,
self.block_size,
self.gamma_scale,
self.with_noise,
self.inplace,
self.batchwise,
)
def drop_path(x, drop_prob: float = 0., training: bool = False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
"""
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
"""
if drop_prob == 0.0 or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (
x.ndim - 1
) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)

View File

@@ -1,24 +1,29 @@
import torch.nn as nn
from typing import Optional
class MLP(nn.Module):
# MLP: FC -> Activation -> Drop -> FC -> Drop
def __init__(self, in_features, hidden_features: Optional[int] = None,
out_features: Optional[int] = None,
act_layer=nn.GELU,
drop: Optional[float] = None):
super(MLP, self).__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop or 0)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class MLP(nn.Module):
# MLP: FC -> Activation -> Drop -> FC -> Drop
def __init__(
self,
in_features,
hidden_features: Optional[int] = None,
out_features: Optional[int] = None,
act_layer=nn.GELU,
drop: Optional[float] = None,
):
super(MLP, self).__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop or 0)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x

View File

@@ -5,31 +5,31 @@ import torch
import torch.nn as nn
import math
class PositionalEncoder(nn.Module):
# Attention Is All You Need: https://arxiv.org/pdf/1706.03762.pdf
# https://github.com/pytorch/examples/blob/master/word_language_model/model.py#L65
def __init__(self, d_model, max_seq_len, dropout=0.1):
super(PositionalEncoder, self).__init__()
self.d_model = d_model
# create constant 'pe' matrix with values dependant on
# pos and i
pe = torch.zeros(max_seq_len, d_model)
for pos in range(max_seq_len):
for i in range(0, d_model):
div = 10000 ** ((i // 2) * 2 / d_model)
value = pos / div
if i % 2 == 0:
pe[pos, i] = math.sin(value)
else:
pe[pos, i] = math.cos(value)
pe = pe.unsqueeze(0)
self.dropout = nn.Dropout(p=dropout)
self.register_buffer('pe', pe)
def forward(self, x):
batch, seq, fdim = x.shape[:3]
embeddings = self.pe[:, :seq, :fdim]
outs = self.dropout(x + embeddings)
return outs
class PositionalEncoder(nn.Module):
# Attention Is All You Need: https://arxiv.org/pdf/1706.03762.pdf
# https://github.com/pytorch/examples/blob/master/word_language_model/model.py#L65
def __init__(self, d_model, max_seq_len, dropout=0.1):
super(PositionalEncoder, self).__init__()
self.d_model = d_model
# create constant 'pe' matrix with values dependant on
# pos and i
pe = torch.zeros(max_seq_len, d_model)
for pos in range(max_seq_len):
for i in range(0, d_model):
div = 10000 ** ((i // 2) * 2 / d_model)
value = pos / div
if i % 2 == 0:
pe[pos, i] = math.sin(value)
else:
pe[pos, i] = math.cos(value)
pe = pe.unsqueeze(0)
self.dropout = nn.Dropout(p=dropout)
self.register_buffer("pe", pe)
def forward(self, x):
batch, seq, fdim = x.shape[:3]
embeddings = self.pe[:, :seq, :fdim]
outs = self.dropout(x + embeddings)
return outs

View File

@@ -2,24 +2,22 @@ import torch.nn as nn
from torch.nn.parameter import Parameter
from typing import Optional
from layers.super_module import SuperModule
from layers.super_module import SuperModule
class Linear(nn.Module):
"""Applies a linear transformation to the incoming data: :math:`y = xA^T + b`
"""
__constants__ = ['in_features', 'out_features']
in_features: int
out_features: int
weight: Tensor
class SuperLinear(SuperModule):
"""Applies a linear transformation to the incoming data: :math:`y = xA^T + b`"""
def __init__(self, in_features: int, out_features: int, bias: bool = True) -> None:
super(Linear, self).__init__()
super(SuperLinear, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.Tensor(out_features, in_features))
if bias:
self.bias = Parameter(torch.Tensor(out_features))
else:
self.register_parameter('bias', None)
self.register_parameter("bias", None)
self.reset_parameters()
def reset_parameters(self) -> None:
@@ -33,28 +31,33 @@ class Linear(nn.Module):
return F.linear(input, self.weight, self.bias)
def extra_repr(self) -> str:
return 'in_features={}, out_features={}, bias={}'.format(
return "in_features={:}, out_features={:}, bias={:}".format(
self.in_features, self.out_features, self.bias is not None
)
class SuperMLP(nn.Module):
# MLP: FC -> Activation -> Drop -> FC -> Drop
def __init__(self, in_features, hidden_features: Optional[int] = None,
out_features: Optional[int] = None,
act_layer=nn.GELU,
drop: Optional[float] = None):
super(MLP, self).__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop or 0)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class SuperMLP(nn.Module):
# MLP: FC -> Activation -> Drop -> FC -> Drop
def __init__(
self,
in_features,
hidden_features: Optional[int] = None,
out_features: Optional[int] = None,
act_layer=nn.GELU,
drop: Optional[float] = None,
):
super(MLP, self).__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop or 0)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x

View File

@@ -1,7 +1,17 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.01 #
#####################################################
import abc
import torch.nn as nn
class SuperModule(nn.Module):
def __init__(self):
super(SuperModule, self).__init__()
class SuperModule(abc.ABCMeta, nn.Module):
"""This class equips the nn.Module class with the ability to apply AutoDL."""
def __init__(self):
super(SuperModule, self).__init__()
@abc.abstractmethod
def abstract_search_space(self):
raise NotImplementedError

View File

@@ -5,57 +5,59 @@ import warnings
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1. + math.erf(x / math.sqrt(2.))) / 2.
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2)
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn(
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2,
)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.))
tensor.add_(mean)
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.0))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
# type: (Tensor, float, float, float, float) -> Tensor
r"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \leq \text{mean} \leq b`.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.trunc_normal_(w)
"""
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0):
# type: (Tensor, float, float, float, float) -> Tensor
r"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \leq \text{mean} \leq b`.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.trunc_normal_(w)
"""
return _no_grad_trunc_normal_(tensor, mean, std, a, b)

View File

@@ -6,5 +6,6 @@
from .basic_space import Categorical
from .basic_space import Continuous
from .basic_space import Integer
from .basic_op import has_categorical
from .basic_op import has_continuous

View File

@@ -92,6 +92,32 @@ class Categorical(Space):
return sample
class Integer(Categorical):
"""A space contains the integer values."""
def __init__(self, lower: int, upper: int, default: Optional[int] = None):
if not isinstance(lower, int) or not isinstance(upper, int):
raise ValueError(
"The lower [{:}] and uppwer [{:}] must be int.".format(lower, upper)
)
data = list(range(lower, upper + 1))
self._raw_lower = lower
self._raw_upper = upper
self._raw_default = default
if default is not None and (default < lower or default > upper):
raise ValueError("The default value [{:}] is out of range.".format(default))
default = data.index(default)
super(Integer, self).__init__(*data, default=default)
def __repr__(self):
return "{name:}(lower={lower:}, upper={upper:}, default={default:})".format(
name=self.__class__.__name__,
lower=self._raw_lower,
upper=self._raw_upper,
default=self._raw_default,
)
np_float_types = (np.float16, np.float32, np.float64)
np_int_types = (
np.uint8,