Add int search space

This commit is contained in:
D-X-Y
2021-03-18 16:02:55 +08:00
parent ece6ac5f41
commit 63c8bb9bc8
67 changed files with 5150 additions and 1474 deletions

View File

@@ -47,15 +47,21 @@ def visualize_relative_ranking(vis_save_dir):
print("{:} start to visualize relative ranking".format(time_string()))
# maximum accuracy with ResNet-level params 11472
x_010_accs = [
cifar010_info["test_accs"][i] if cifar010_info["params"][i] <= cifar010_info["params"][11472] else -1
cifar010_info["test_accs"][i]
if cifar010_info["params"][i] <= cifar010_info["params"][11472]
else -1
for i in indexes
]
x_100_accs = [
cifar100_info["test_accs"][i] if cifar100_info["params"][i] <= cifar100_info["params"][11472] else -1
cifar100_info["test_accs"][i]
if cifar100_info["params"][i] <= cifar100_info["params"][11472]
else -1
for i in indexes
]
x_img_accs = [
imagenet_info["test_accs"][i] if imagenet_info["params"][i] <= imagenet_info["params"][11472] else -1
imagenet_info["test_accs"][i]
if imagenet_info["params"][i] <= imagenet_info["params"][11472]
else -1
for i in indexes
]
@@ -79,8 +85,15 @@ def visualize_relative_ranking(vis_save_dir):
plt.xlim(min(indexes), max(indexes))
plt.ylim(min(indexes), max(indexes))
# plt.ylabel('y').set_rotation(0)
plt.yticks(np.arange(min(indexes), max(indexes), max(indexes) // 6), fontsize=LegendFontsize, rotation="vertical")
plt.xticks(np.arange(min(indexes), max(indexes), max(indexes) // 6), fontsize=LegendFontsize)
plt.yticks(
np.arange(min(indexes), max(indexes), max(indexes) // 6),
fontsize=LegendFontsize,
rotation="vertical",
)
plt.xticks(
np.arange(min(indexes), max(indexes), max(indexes) // 6),
fontsize=LegendFontsize,
)
# ax.scatter(indexes, cifar100_labels, marker='^', s=0.5, c='tab:green', alpha=0.8, label='CIFAR-100')
# ax.scatter(indexes, imagenet_labels, marker='*', s=0.5, c='tab:red' , alpha=0.8, label='ImageNet-16-120')
# ax.scatter(indexes, indexes , marker='o', s=0.5, c='tab:blue' , alpha=0.8, label='CIFAR-10')
@@ -113,7 +126,9 @@ def visualize_relative_ranking(vis_save_dir):
)
fig = plt.figure(figsize=figsize)
plt.axis("off")
h = sns.heatmap(CoRelMatrix, annot=True, annot_kws={"size": sns_size}, fmt=".3f", linewidths=0.5)
h = sns.heatmap(
CoRelMatrix, annot=True, annot_kws={"size": sns_size}, fmt=".3f", linewidths=0.5
)
save_path = (vis_save_dir / "co-relation-all.pdf").resolve()
fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="pdf")
print("{:} save into {:}".format(time_string(), save_path))
@@ -142,8 +157,16 @@ def visualize_relative_ranking(vis_save_dir):
)
fig = plt.figure(figsize=figsize)
plt.axis("off")
h = sns.heatmap(CoRelMatrix, annot=True, annot_kws={"size": sns_size}, fmt=".3f", linewidths=0.5)
save_path = (vis_save_dir / "co-relation-top-{:}.pdf".format(len(selected_indexes))).resolve()
h = sns.heatmap(
CoRelMatrix,
annot=True,
annot_kws={"size": sns_size},
fmt=".3f",
linewidths=0.5,
)
save_path = (
vis_save_dir / "co-relation-top-{:}.pdf".format(len(selected_indexes))
).resolve()
fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="pdf")
print("{:} save into {:}".format(time_string(), save_path))
plt.close("all")
@@ -155,7 +178,14 @@ def visualize_info(meta_file, dataset, vis_save_dir):
if not cache_file_path.exists():
print("Do not find cache file : {:}".format(cache_file_path))
nas_bench = API(str(meta_file))
params, flops, train_accs, valid_accs, test_accs, otest_accs = [], [], [], [], [], []
params, flops, train_accs, valid_accs, test_accs, otest_accs = (
[],
[],
[],
[],
[],
[],
)
for index in range(len(nas_bench)):
info = nas_bench.query_by_index(index, use_12epochs_result=False)
resx = info.get_comput_costs(dataset)
@@ -239,7 +269,13 @@ def visualize_info(meta_file, dataset, vis_save_dir):
plt.yticks(np.arange(0, 51, 10), fontsize=LegendFontsize)
ax.scatter(params, valid_accs, marker="o", s=0.5, c="tab:blue")
ax.scatter(
[resnet["params"]], [resnet["valid_acc"]], marker="*", s=resnet_scale, c="tab:orange", label="resnet", alpha=0.4
[resnet["params"]],
[resnet["valid_acc"]],
marker="*",
s=resnet_scale,
c="tab:orange",
label="resnet",
alpha=0.4,
)
plt.grid(zorder=0)
ax.set_axisbelow(True)
@@ -321,7 +357,10 @@ def visualize_info(meta_file, dataset, vis_save_dir):
fig = plt.figure(figsize=figsize)
ax = fig.add_subplot(111)
plt.xlim(0, max(indexes))
plt.xticks(np.arange(min(indexes), max(indexes), max(indexes) // 5), fontsize=LegendFontsize)
plt.xticks(
np.arange(min(indexes), max(indexes), max(indexes) // 5),
fontsize=LegendFontsize,
)
if dataset == "cifar10":
plt.ylim(50, 100)
plt.yticks(np.arange(50, 101, 10), fontsize=LegendFontsize)
@@ -357,7 +396,11 @@ def visualize_info(meta_file, dataset, vis_save_dir):
def visualize_rank_over_time(meta_file, vis_save_dir):
print("\n" + "-" * 150)
vis_save_dir.mkdir(parents=True, exist_ok=True)
print("{:} start to visualize rank-over-time into {:}".format(time_string(), vis_save_dir))
print(
"{:} start to visualize rank-over-time into {:}".format(
time_string(), vis_save_dir
)
)
cache_file_path = vis_save_dir / "rank-over-time-cache-info.pth"
if not cache_file_path.exists():
print("Do not find cache file : {:}".format(cache_file_path))
@@ -434,17 +477,26 @@ def visualize_rank_over_time(meta_file, vis_save_dir):
plt.xlim(min(indexes), max(indexes))
plt.ylim(min(indexes), max(indexes))
plt.yticks(
np.arange(min(indexes), max(indexes), max(indexes) // 6), fontsize=LegendFontsize, rotation="vertical"
np.arange(min(indexes), max(indexes), max(indexes) // 6),
fontsize=LegendFontsize,
rotation="vertical",
)
plt.xticks(
np.arange(min(indexes), max(indexes), max(indexes) // 6),
fontsize=LegendFontsize,
)
plt.xticks(np.arange(min(indexes), max(indexes), max(indexes) // 6), fontsize=LegendFontsize)
ax.scatter(indexes, valid_ord_lbls, marker="^", s=0.5, c="tab:green", alpha=0.8)
ax.scatter(indexes, indexes, marker="o", s=0.5, c="tab:blue", alpha=0.8)
ax.scatter([-1], [-1], marker="^", s=100, c="tab:green", label="CIFAR-10 validation")
ax.scatter(
[-1], [-1], marker="^", s=100, c="tab:green", label="CIFAR-10 validation"
)
ax.scatter([-1], [-1], marker="o", s=100, c="tab:blue", label="CIFAR-10 test")
plt.grid(zorder=0)
ax.set_axisbelow(True)
plt.legend(loc="upper left", fontsize=LegendFontsize)
ax.set_xlabel("architecture ranking in the final test accuracy", fontsize=LabelSize)
ax.set_xlabel(
"architecture ranking in the final test accuracy", fontsize=LabelSize
)
ax.set_ylabel("architecture ranking in the validation set", fontsize=LabelSize)
save_path = (vis_save_dir / "time-{:03d}.pdf".format(sepoch)).resolve()
fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="pdf")
@@ -464,7 +516,9 @@ def write_video(save_dir):
# shape = (ximage.shape[1], ximage.shape[0])
shape = (1000, 1000)
# writer = cv2.VideoWriter(str(video_save_path), cv2.VideoWriter_fourcc(*"MJPG"), 25, shape)
writer = cv2.VideoWriter(str(video_save_path), cv2.VideoWriter_fourcc(*"MJPG"), 5, shape)
writer = cv2.VideoWriter(
str(video_save_path), cv2.VideoWriter_fourcc(*"MJPG"), 5, shape
)
for idx, image in enumerate(images):
ximage = cv2.imread(str(image))
_image = cv2.resize(ximage, shape)
@@ -490,9 +544,13 @@ def plot_results_nas_v2(api, dataset_xset_a, dataset_xset_b, root, file_name, y_
accuracies = []
for x in all_indexes:
info = api.arch2infos_full[x]
metrics = info.get_metrics(dataset_xset_a[0], dataset_xset_a[1], None, False)
metrics = info.get_metrics(
dataset_xset_a[0], dataset_xset_a[1], None, False
)
accuracies_A.append(metrics["accuracy"])
metrics = info.get_metrics(dataset_xset_b[0], dataset_xset_b[1], None, False)
metrics = info.get_metrics(
dataset_xset_b[0], dataset_xset_b[1], None, False
)
accuracies_B.append(metrics["accuracy"])
accuracies.append((accuracies_A[-1], accuracies_B[-1]))
if indexes is None:
@@ -580,7 +638,14 @@ def plot_results_nas(api, dataset, xset, root, file_name, y_lims):
plt.ylabel("The accuracy (%)", fontsize=LabelSize)
for idx, legend in enumerate(legends):
plt.plot(indexes, All_Accs[legend], color=color_set[idx], linestyle="-", label="{:}".format(legend), lw=2)
plt.plot(
indexes,
All_Accs[legend],
color=color_set[idx],
linestyle="-",
label="{:}".format(legend),
lw=2,
)
print(
"{:} : mean = {:}, std = {:} :: {:.2f}$\\pm${:.2f}".format(
legend,
@@ -646,13 +711,19 @@ def just_show(api):
return xresults
for xkey in xpaths.keys():
all_paths = ["{:}/seed-{:}-basic.pth".format(xpaths[xkey], seed) for seed in xseeds[xkey]]
all_paths = [
"{:}/seed-{:}-basic.pth".format(xpaths[xkey], seed) for seed in xseeds[xkey]
]
all_datas = [torch.load(xpath) for xpath in all_paths]
accyss = [get_accs(xdatas) for xdatas in all_datas]
accyss = np.array(accyss)
print("\nxkey = {:}".format(xkey))
for i in range(accyss.shape[1]):
print("---->>>> {:.2f}$\\pm${:.2f}".format(accyss[:, i].mean(), accyss[:, i].std()))
print(
"---->>>> {:.2f}$\\pm${:.2f}".format(
accyss[:, i].mean(), accyss[:, i].std()
)
)
print("\n{:}".format(get_accs(None, 11472))) # resnet
pairs = [
@@ -665,10 +736,16 @@ def just_show(api):
]
for dataset, metric_on_set in pairs:
arch_index, highest_acc = api.find_best(dataset, metric_on_set)
print("[{:10s}-{:10s} ::: index={:5d}, accuracy={:.2f}".format(dataset, metric_on_set, arch_index, highest_acc))
print(
"[{:10s}-{:10s} ::: index={:5d}, accuracy={:.2f}".format(
dataset, metric_on_set, arch_index, highest_acc
)
)
def show_nas_sharing_w(api, dataset, subset, vis_save_dir, sufix, file_name, y_lims, x_maxs):
def show_nas_sharing_w(
api, dataset, subset, vis_save_dir, sufix, file_name, y_lims, x_maxs
):
color_set = ["r", "b", "g", "c", "m", "y", "k"]
dpi, width, height = 300, 3400, 2600
LabelSize, LegendFontsize = 28, 28
@@ -685,12 +762,24 @@ def show_nas_sharing_w(api, dataset, subset, vis_save_dir, sufix, file_name, y_l
plt.ylabel("The accuracy (%)", fontsize=LabelSize)
xpaths = {
"RSPS": "output/search-cell-nas-bench-201/RANDOM-NAS-cifar10-{:}/checkpoint/".format(sufix),
"DARTS-V1": "output/search-cell-nas-bench-201/DARTS-V1-cifar10-{:}/checkpoint/".format(sufix),
"DARTS-V2": "output/search-cell-nas-bench-201/DARTS-V2-cifar10-{:}/checkpoint/".format(sufix),
"GDAS": "output/search-cell-nas-bench-201/GDAS-cifar10-{:}/checkpoint/".format(sufix),
"SETN": "output/search-cell-nas-bench-201/SETN-cifar10-{:}/checkpoint/".format(sufix),
"ENAS": "output/search-cell-nas-bench-201/ENAS-cifar10-{:}/checkpoint/".format(sufix),
"RSPS": "output/search-cell-nas-bench-201/RANDOM-NAS-cifar10-{:}/checkpoint/".format(
sufix
),
"DARTS-V1": "output/search-cell-nas-bench-201/DARTS-V1-cifar10-{:}/checkpoint/".format(
sufix
),
"DARTS-V2": "output/search-cell-nas-bench-201/DARTS-V2-cifar10-{:}/checkpoint/".format(
sufix
),
"GDAS": "output/search-cell-nas-bench-201/GDAS-cifar10-{:}/checkpoint/".format(
sufix
),
"SETN": "output/search-cell-nas-bench-201/SETN-cifar10-{:}/checkpoint/".format(
sufix
),
"ENAS": "output/search-cell-nas-bench-201/ENAS-cifar10-{:}/checkpoint/".format(
sufix
),
}
"""
xseeds = {'RSPS' : [5349, 59613, 5983],
@@ -713,16 +802,20 @@ def show_nas_sharing_w(api, dataset, subset, vis_save_dir, sufix, file_name, y_l
def get_accs(xdata):
epochs, xresults = xdata["epoch"], []
if -1 in xdata["genotypes"]:
metrics = api.arch2infos_full[api.query_index_by_arch(xdata["genotypes"][-1])].get_metrics(
metrics = api.arch2infos_full[
api.query_index_by_arch(xdata["genotypes"][-1])
].get_metrics(dataset, subset, None, False)
else:
metrics = api.arch2infos_full[api.random()].get_metrics(
dataset, subset, None, False
)
else:
metrics = api.arch2infos_full[api.random()].get_metrics(dataset, subset, None, False)
xresults.append(metrics["accuracy"])
for iepoch in range(epochs):
genotype = xdata["genotypes"][iepoch]
index = api.query_index_by_arch(genotype)
metrics = api.arch2infos_full[index].get_metrics(dataset, subset, None, False)
metrics = api.arch2infos_full[index].get_metrics(
dataset, subset, None, False
)
xresults.append(metrics["accuracy"])
return xresults
@@ -735,7 +828,9 @@ def show_nas_sharing_w(api, dataset, subset, vis_save_dir, sufix, file_name, y_l
for idx, method in enumerate(xxxstrs):
xkey = method
all_paths = ["{:}/seed-{:}-basic.pth".format(xpaths[xkey], seed) for seed in xseeds[xkey]]
all_paths = [
"{:}/seed-{:}-basic.pth".format(xpaths[xkey], seed) for seed in xseeds[xkey]
]
all_datas = [torch.load(xpath, map_location="cpu") for xpath in all_paths]
accyss = [get_accs(xdatas) for xdatas in all_datas]
accyss = np.array(accyss)
@@ -762,7 +857,9 @@ def show_nas_sharing_w(api, dataset, subset, vis_save_dir, sufix, file_name, y_l
fig.savefig(str(save_path), dpi=dpi, bbox_inches="tight", format="pdf")
def show_nas_sharing_w_v2(api, data_sub_a, data_sub_b, vis_save_dir, sufix, file_name, y_lims, x_maxs):
def show_nas_sharing_w_v2(
api, data_sub_a, data_sub_b, vis_save_dir, sufix, file_name, y_lims, x_maxs
):
color_set = ["r", "b", "g", "c", "m", "y", "k"]
dpi, width, height = 300, 3400, 2600
LabelSize, LegendFontsize = 28, 28
@@ -779,12 +876,24 @@ def show_nas_sharing_w_v2(api, data_sub_a, data_sub_b, vis_save_dir, sufix, file
plt.ylabel("The accuracy (%)", fontsize=LabelSize)
xpaths = {
"RSPS": "output/search-cell-nas-bench-201/RANDOM-NAS-cifar10-{:}/checkpoint/".format(sufix),
"DARTS-V1": "output/search-cell-nas-bench-201/DARTS-V1-cifar10-{:}/checkpoint/".format(sufix),
"DARTS-V2": "output/search-cell-nas-bench-201/DARTS-V2-cifar10-{:}/checkpoint/".format(sufix),
"GDAS": "output/search-cell-nas-bench-201/GDAS-cifar10-{:}/checkpoint/".format(sufix),
"SETN": "output/search-cell-nas-bench-201/SETN-cifar10-{:}/checkpoint/".format(sufix),
"ENAS": "output/search-cell-nas-bench-201/ENAS-cifar10-{:}/checkpoint/".format(sufix),
"RSPS": "output/search-cell-nas-bench-201/RANDOM-NAS-cifar10-{:}/checkpoint/".format(
sufix
),
"DARTS-V1": "output/search-cell-nas-bench-201/DARTS-V1-cifar10-{:}/checkpoint/".format(
sufix
),
"DARTS-V2": "output/search-cell-nas-bench-201/DARTS-V2-cifar10-{:}/checkpoint/".format(
sufix
),
"GDAS": "output/search-cell-nas-bench-201/GDAS-cifar10-{:}/checkpoint/".format(
sufix
),
"SETN": "output/search-cell-nas-bench-201/SETN-cifar10-{:}/checkpoint/".format(
sufix
),
"ENAS": "output/search-cell-nas-bench-201/ENAS-cifar10-{:}/checkpoint/".format(
sufix
),
}
"""
xseeds = {'RSPS' : [5349, 59613, 5983],
@@ -807,16 +916,20 @@ def show_nas_sharing_w_v2(api, data_sub_a, data_sub_b, vis_save_dir, sufix, file
def get_accs(xdata, dataset, subset):
epochs, xresults = xdata["epoch"], []
if -1 in xdata["genotypes"]:
metrics = api.arch2infos_full[api.query_index_by_arch(xdata["genotypes"][-1])].get_metrics(
metrics = api.arch2infos_full[
api.query_index_by_arch(xdata["genotypes"][-1])
].get_metrics(dataset, subset, None, False)
else:
metrics = api.arch2infos_full[api.random()].get_metrics(
dataset, subset, None, False
)
else:
metrics = api.arch2infos_full[api.random()].get_metrics(dataset, subset, None, False)
xresults.append(metrics["accuracy"])
for iepoch in range(epochs):
genotype = xdata["genotypes"][iepoch]
index = api.query_index_by_arch(genotype)
metrics = api.arch2infos_full[index].get_metrics(dataset, subset, None, False)
metrics = api.arch2infos_full[index].get_metrics(
dataset, subset, None, False
)
xresults.append(metrics["accuracy"])
return xresults
@@ -829,10 +942,16 @@ def show_nas_sharing_w_v2(api, data_sub_a, data_sub_b, vis_save_dir, sufix, file
for idx, method in enumerate(xxxstrs):
xkey = method
all_paths = ["{:}/seed-{:}-basic.pth".format(xpaths[xkey], seed) for seed in xseeds[xkey]]
all_paths = [
"{:}/seed-{:}-basic.pth".format(xpaths[xkey], seed) for seed in xseeds[xkey]
]
all_datas = [torch.load(xpath, map_location="cpu") for xpath in all_paths]
accyss_A = np.array([get_accs(xdatas, data_sub_a[0], data_sub_a[1]) for xdatas in all_datas])
accyss_B = np.array([get_accs(xdatas, data_sub_b[0], data_sub_b[1]) for xdatas in all_datas])
accyss_A = np.array(
[get_accs(xdatas, data_sub_a[0], data_sub_a[1]) for xdatas in all_datas]
)
accyss_B = np.array(
[get_accs(xdatas, data_sub_b[0], data_sub_b[1]) for xdatas in all_datas]
)
epochs = list(range(accyss_A.shape[1]))
for j, accyss in enumerate([accyss_A, accyss_B]):
if x_maxs == 50:
@@ -859,7 +978,9 @@ def show_nas_sharing_w_v2(api, data_sub_a, data_sub_b, vis_save_dir, sufix, file
)
setname = data_sub_a if j == 0 else data_sub_b
print(
"{:} -- {:} ---- {:.2f}$\\pm${:.2f}".format(method, setname, accyss[:, -1].mean(), accyss[:, -1].std())
"{:} -- {:} ---- {:.2f}$\\pm${:.2f}".format(
method, setname, accyss[:, -1].mean(), accyss[:, -1].std()
)
)
# plt.legend(loc=4, fontsize=LegendFontsize)
plt.legend(loc=0, fontsize=LegendFontsize)
@@ -871,7 +992,10 @@ def show_nas_sharing_w_v2(api, data_sub_a, data_sub_b, vis_save_dir, sufix, file
def show_reinforce(api, root, dataset, xset, file_name, y_lims):
print("root-path={:}, dataset={:}, xset={:}".format(root, dataset, xset))
LRs = ["0.01", "0.02", "0.1", "0.2", "0.5"]
checkpoints = ["./output/search-cell-nas-bench-201/REINFORCE-cifar10-{:}/results.pth".format(x) for x in LRs]
checkpoints = [
"./output/search-cell-nas-bench-201/REINFORCE-cifar10-{:}/results.pth".format(x)
for x in LRs
]
acc_lr_dict, indexes = {}, None
for lr, checkpoint in zip(LRs, checkpoints):
all_indexes, accuracies = torch.load(checkpoint, map_location="cpu"), []
@@ -882,7 +1006,11 @@ def show_reinforce(api, root, dataset, xset, file_name, y_lims):
if indexes is None:
indexes = list(range(len(accuracies)))
acc_lr_dict[lr] = np.array(sorted(accuracies))
print("LR={:.3f}, mean={:}, std={:}".format(float(lr), acc_lr_dict[lr].mean(), acc_lr_dict[lr].std()))
print(
"LR={:.3f}, mean={:}, std={:}".format(
float(lr), acc_lr_dict[lr].mean(), acc_lr_dict[lr].std()
)
)
color_set = ["r", "b", "g", "c", "m", "y", "k"]
dpi, width, height = 300, 3400, 2600
@@ -903,7 +1031,15 @@ def show_reinforce(api, root, dataset, xset, file_name, y_lims):
legend = "LR={:.2f}".format(float(LR))
# color, linestyle = color_set[idx // 2], '-' if idx % 2 == 0 else '-.'
color, linestyle = color_set[idx], "-"
plt.plot(indexes, acc_lr_dict[LR], color=color, linestyle=linestyle, label=legend, lw=2, alpha=0.8)
plt.plot(
indexes,
acc_lr_dict[LR],
color=color,
linestyle=linestyle,
label=legend,
lw=2,
alpha=0.8,
)
print(
"{:} : mean = {:}, std = {:} :: {:.2f}$\\pm${:.2f}".format(
legend,
@@ -922,7 +1058,10 @@ def show_reinforce(api, root, dataset, xset, file_name, y_lims):
def show_rea(api, root, dataset, xset, file_name, y_lims):
print("root-path={:}, dataset={:}, xset={:}".format(root, dataset, xset))
SSs = [3, 5, 10]
checkpoints = ["./output/search-cell-nas-bench-201/R-EA-cifar10-SS{:}/results.pth".format(x) for x in SSs]
checkpoints = [
"./output/search-cell-nas-bench-201/R-EA-cifar10-SS{:}/results.pth".format(x)
for x in SSs
]
acc_ss_dict, indexes = {}, None
for ss, checkpoint in zip(SSs, checkpoints):
all_indexes, accuracies = torch.load(checkpoint, map_location="cpu"), []
@@ -933,7 +1072,11 @@ def show_rea(api, root, dataset, xset, file_name, y_lims):
if indexes is None:
indexes = list(range(len(accuracies)))
acc_ss_dict[ss] = np.array(sorted(accuracies))
print("Sample-Size={:2d}, mean={:}, std={:}".format(ss, acc_ss_dict[ss].mean(), acc_ss_dict[ss].std()))
print(
"Sample-Size={:2d}, mean={:}, std={:}".format(
ss, acc_ss_dict[ss].mean(), acc_ss_dict[ss].std()
)
)
color_set = ["r", "b", "g", "c", "m", "y", "k"]
dpi, width, height = 300, 3400, 2600
@@ -954,7 +1097,15 @@ def show_rea(api, root, dataset, xset, file_name, y_lims):
legend = "sample-size={:2d}".format(ss)
# color, linestyle = color_set[idx // 2], '-' if idx % 2 == 0 else '-.'
color, linestyle = color_set[idx], "-"
plt.plot(indexes, acc_ss_dict[ss], color=color, linestyle=linestyle, label=legend, lw=2, alpha=0.8)
plt.plot(
indexes,
acc_ss_dict[ss],
color=color,
linestyle=linestyle,
label=legend,
lw=2,
alpha=0.8,
)
print(
"{:} : mean = {:}, std = {:} :: {:.2f}$\\pm${:.2f}".format(
legend,
@@ -973,7 +1124,8 @@ def show_rea(api, root, dataset, xset, file_name, y_lims):
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="NAS-Bench-201", formatter_class=argparse.ArgumentDefaultsHelpFormatter
description="NAS-Bench-201",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--save_dir",
@@ -981,7 +1133,12 @@ if __name__ == "__main__":
default="./output/search-cell-nas-bench-201/visuals",
help="The base-name of folder to save checkpoints and log.",
)
parser.add_argument("--api_path", type=str, default=None, help="The path to the NAS-Bench-201 benchmark file.")
parser.add_argument(
"--api_path",
type=str,
default=None,
help="The path to the NAS-Bench-201 benchmark file.",
)
args = parser.parse_args()
vis_save_dir = Path(args.save_dir)
@@ -1066,9 +1223,25 @@ if __name__ == "__main__":
)
show_nas_sharing_w(
api, "cifar10-valid", "x-valid", vis_save_dir, "BN0", "BN0-XX-CIFAR010-VALID.pdf", (0, 100, 10), 250
api,
"cifar10-valid",
"x-valid",
vis_save_dir,
"BN0",
"BN0-XX-CIFAR010-VALID.pdf",
(0, 100, 10),
250,
)
show_nas_sharing_w(
api,
"cifar10",
"ori-test",
vis_save_dir,
"BN0",
"BN0-XX-CIFAR010-TEST.pdf",
(0, 100, 10),
250,
)
show_nas_sharing_w(api, "cifar10", "ori-test", vis_save_dir, "BN0", "BN0-XX-CIFAR010-TEST.pdf", (0, 100, 10), 250)
"""
for x_maxs in [50, 250]:
show_nas_sharing_w(api, 'cifar10-valid' , 'x-valid' , vis_save_dir, 'nas-plot.pdf', (0, 100,10), x_maxs)