Try a different model / LFNA V3
This commit is contained in:
@@ -5,7 +5,7 @@
|
||||
# python exps/LFNA/lfna.py --env_version v1 --device cuda --lr 0.001
|
||||
# python exps/LFNA/lfna.py --env_version v1 --device cuda --lr 0.002 --meta_batch 128
|
||||
#####################################################
|
||||
import sys, time, copy, torch, random, argparse
|
||||
import pdb, sys, time, copy, torch, random, argparse
|
||||
from tqdm import tqdm
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
@@ -95,19 +95,13 @@ def epoch_evaluate(loader, meta_model, base_model, criterion, device, logger):
|
||||
|
||||
def online_evaluate(env, meta_model, base_model, criterion, args, logger):
|
||||
logger.log("Online evaluate: {:}".format(env))
|
||||
for idx, (timestamp, (future_x, future_y)) in enumerate(env):
|
||||
future_time = timestamp.item()
|
||||
time_seqs = [
|
||||
future_time - iseq * env.timestamp_interval
|
||||
for iseq in range(args.seq_length)
|
||||
]
|
||||
time_seqs.reverse()
|
||||
for idx, (future_time, (future_x, future_y)) in enumerate(env):
|
||||
with torch.no_grad():
|
||||
meta_model.eval()
|
||||
base_model.eval()
|
||||
time_seqs = torch.Tensor(time_seqs).view(1, -1).to(args.device)
|
||||
[seq_containers], _ = meta_model(time_seqs, None)
|
||||
future_container = seq_containers[-1]
|
||||
_, [future_container], _ = meta_model(
|
||||
future_time.to(args.device).view(1, 1), None, True
|
||||
)
|
||||
future_x, future_y = future_x.to(args.device), future_y.to(args.device)
|
||||
future_y_hat = base_model.forward_with_container(future_x, future_container)
|
||||
future_loss = criterion(future_y_hat, future_y)
|
||||
@@ -116,18 +110,17 @@ def online_evaluate(env, meta_model, base_model, criterion, args, logger):
|
||||
idx, len(env), future_loss.item()
|
||||
)
|
||||
)
|
||||
meta_model.adapt(
|
||||
future_time,
|
||||
refine = meta_model.adapt(
|
||||
base_model,
|
||||
criterion,
|
||||
future_time.item(),
|
||||
future_x,
|
||||
future_y,
|
||||
env.timestamp_interval,
|
||||
args.refine_lr,
|
||||
args.refine_epochs,
|
||||
)
|
||||
import pdb
|
||||
|
||||
pdb.set_trace()
|
||||
print("-")
|
||||
meta_model.clear_fixed()
|
||||
meta_model.clear_learnt()
|
||||
|
||||
|
||||
def pretrain_v2(base_model, meta_model, criterion, xenv, args, logger):
|
||||
@@ -251,7 +244,7 @@ def main(args):
|
||||
logger.log("The meta-model is\n{:}".format(meta_model))
|
||||
|
||||
batch_sampler = EnvSampler(train_env, args.meta_batch, args.sampler_enlarge)
|
||||
train_env.reset_max_seq_length(args.seq_length)
|
||||
# train_env.reset_max_seq_length(args.seq_length)
|
||||
# valid_env.reset_max_seq_length(args.seq_length)
|
||||
valid_env_loader = torch.utils.data.DataLoader(
|
||||
valid_env,
|
||||
@@ -269,8 +262,8 @@ def main(args):
|
||||
pretrain_v2(base_model, meta_model, criterion, train_env, args, logger)
|
||||
|
||||
# try to evaluate once
|
||||
online_evaluate(train_env, meta_model, base_model, criterion, args, logger)
|
||||
online_evaluate(valid_env, meta_model, base_model, criterion, args, logger)
|
||||
import pdb
|
||||
|
||||
pdb.set_trace()
|
||||
optimizer = torch.optim.Adam(
|
||||
@@ -510,11 +503,11 @@ if __name__ == "__main__":
|
||||
parser.add_argument(
|
||||
"--refine_lr",
|
||||
type=float,
|
||||
default=0.001,
|
||||
default=0.002,
|
||||
help="The learning rate for the optimizer, during refine",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--refine_epochs", type=int, default=1000, help="The final refine #epochs."
|
||||
"--refine_epochs", type=int, default=50, help="The final refine #epochs."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--early_stop_thresh",
|
||||
|
||||
Reference in New Issue
Block a user