Update LFNA with train/valid
This commit is contained in:
@@ -151,12 +151,15 @@ class SyntheticDEnv(data.Dataset):
|
||||
return len(self._timestamp_generator)
|
||||
|
||||
def __repr__(self):
|
||||
return "{name}({cur_num:}/{total} elements, ndim={ndim}, num_per_task={num_per_task})".format(
|
||||
return "{name}({cur_num:}/{total} elements, ndim={ndim}, num_per_task={num_per_task}, range=[{xrange_min:.5f}~{xrange_max:.5f}], mode={mode})".format(
|
||||
name=self.__class__.__name__,
|
||||
cur_num=len(self),
|
||||
total=len(self._timestamp_generator),
|
||||
ndim=self._ndim,
|
||||
num_per_task=self._num_per_task,
|
||||
xrange_min=self.min_timestamp,
|
||||
xrange_max=self.max_timestamp,
|
||||
mode=self._timestamp_generator.mode,
|
||||
)
|
||||
|
||||
|
||||
|
@@ -15,6 +15,7 @@ from .super_norm import SuperLayerNorm1D
|
||||
from .super_norm import SuperSimpleLearnableNorm
|
||||
from .super_norm import SuperIdentity
|
||||
from .super_dropout import SuperDropout
|
||||
from .super_dropout import SuperDrop
|
||||
|
||||
super_name2norm = {
|
||||
"simple_norm": SuperSimpleNorm,
|
||||
|
@@ -6,7 +6,7 @@ import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
import math
|
||||
from typing import Optional, Callable
|
||||
from typing import Optional, Callable, Tuple
|
||||
|
||||
import spaces
|
||||
from .super_module import SuperModule
|
||||
@@ -38,3 +38,46 @@ class SuperDropout(SuperModule):
|
||||
def extra_repr(self) -> str:
|
||||
xstr = "inplace=True" if self._inplace else ""
|
||||
return "p={:}".format(self._p) + ", " + xstr
|
||||
|
||||
|
||||
class SuperDrop(SuperModule):
|
||||
"""Applies a the drop-path function element-wise."""
|
||||
|
||||
def __init__(self, p: float, dims: Tuple[int], recover: bool = True) -> None:
|
||||
super(SuperDrop, self).__init__()
|
||||
self._p = p
|
||||
self._dims = dims
|
||||
self._recover = recover
|
||||
|
||||
@property
|
||||
def abstract_search_space(self):
|
||||
return spaces.VirtualNode(id(self))
|
||||
|
||||
def forward_candidate(self, input: torch.Tensor) -> torch.Tensor:
|
||||
return self.forward_raw(input)
|
||||
|
||||
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
|
||||
if not self.training or self._p <= 0:
|
||||
return input
|
||||
keep_prob = 1 - self._p
|
||||
shape = [input.shape[0]] + [
|
||||
x if y == -1 else y for x, y in zip(input.shape[1:], self._dims)
|
||||
]
|
||||
random_tensor = keep_prob + torch.rand(
|
||||
shape, dtype=input.dtype, device=input.device
|
||||
)
|
||||
random_tensor.floor_() # binarize
|
||||
if self._recover:
|
||||
return input.div(keep_prob) * random_tensor
|
||||
else:
|
||||
return input * random_tensor # as masks
|
||||
|
||||
def forward_with_container(self, input, container, prefix=[]):
|
||||
return self.forward_raw(input)
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return (
|
||||
"p={:}".format(self._p)
|
||||
+ ", dims={:}".format(self._dims)
|
||||
+ ", recover={:}".format(self._recover)
|
||||
)
|
||||
|
Reference in New Issue
Block a user