Update LFNA with train/valid

This commit is contained in:
D-X-Y
2021-05-17 07:39:24 +00:00
parent de8cf677d9
commit 5c851ac25a
5 changed files with 123 additions and 26 deletions

View File

@@ -151,12 +151,15 @@ class SyntheticDEnv(data.Dataset):
return len(self._timestamp_generator)
def __repr__(self):
return "{name}({cur_num:}/{total} elements, ndim={ndim}, num_per_task={num_per_task})".format(
return "{name}({cur_num:}/{total} elements, ndim={ndim}, num_per_task={num_per_task}, range=[{xrange_min:.5f}~{xrange_max:.5f}], mode={mode})".format(
name=self.__class__.__name__,
cur_num=len(self),
total=len(self._timestamp_generator),
ndim=self._ndim,
num_per_task=self._num_per_task,
xrange_min=self.min_timestamp,
xrange_max=self.max_timestamp,
mode=self._timestamp_generator.mode,
)

View File

@@ -15,6 +15,7 @@ from .super_norm import SuperLayerNorm1D
from .super_norm import SuperSimpleLearnableNorm
from .super_norm import SuperIdentity
from .super_dropout import SuperDropout
from .super_dropout import SuperDrop
super_name2norm = {
"simple_norm": SuperSimpleNorm,

View File

@@ -6,7 +6,7 @@ import torch.nn as nn
import torch.nn.functional as F
import math
from typing import Optional, Callable
from typing import Optional, Callable, Tuple
import spaces
from .super_module import SuperModule
@@ -38,3 +38,46 @@ class SuperDropout(SuperModule):
def extra_repr(self) -> str:
xstr = "inplace=True" if self._inplace else ""
return "p={:}".format(self._p) + ", " + xstr
class SuperDrop(SuperModule):
"""Applies a the drop-path function element-wise."""
def __init__(self, p: float, dims: Tuple[int], recover: bool = True) -> None:
super(SuperDrop, self).__init__()
self._p = p
self._dims = dims
self._recover = recover
@property
def abstract_search_space(self):
return spaces.VirtualNode(id(self))
def forward_candidate(self, input: torch.Tensor) -> torch.Tensor:
return self.forward_raw(input)
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
if not self.training or self._p <= 0:
return input
keep_prob = 1 - self._p
shape = [input.shape[0]] + [
x if y == -1 else y for x, y in zip(input.shape[1:], self._dims)
]
random_tensor = keep_prob + torch.rand(
shape, dtype=input.dtype, device=input.device
)
random_tensor.floor_() # binarize
if self._recover:
return input.div(keep_prob) * random_tensor
else:
return input * random_tensor # as masks
def forward_with_container(self, input, container, prefix=[]):
return self.forward_raw(input)
def extra_repr(self) -> str:
return (
"p={:}".format(self._p)
+ ", dims={:}".format(self._dims)
+ ", recover={:}".format(self._recover)
)