Refine lib -> xautodl
This commit is contained in:
91
exps/TAS/prepare.py
Normal file
91
exps/TAS/prepare.py
Normal file
@@ -0,0 +1,91 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.01 #
|
||||
#####################################################
|
||||
# python exps/prepare.py --name cifar10 --root $TORCH_HOME/cifar.python --save ./data/cifar10.split.pth
|
||||
# python exps/prepare.py --name cifar100 --root $TORCH_HOME/cifar.python --save ./data/cifar100.split.pth
|
||||
# python exps/prepare.py --name imagenet-1k --root $TORCH_HOME/ILSVRC2012 --save ./data/imagenet-1k.split.pth
|
||||
#####################################################
|
||||
import sys, time, torch, random, argparse
|
||||
from collections import defaultdict
|
||||
import os.path as osp
|
||||
from PIL import ImageFile
|
||||
|
||||
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
import torchvision
|
||||
import torchvision.datasets as dset
|
||||
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Prepare splits for searching",
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
parser.add_argument("--name", type=str, help="The dataset name.")
|
||||
parser.add_argument("--root", type=str, help="The directory to the dataset.")
|
||||
parser.add_argument("--save", type=str, help="The save path.")
|
||||
parser.add_argument("--ratio", type=float, help="The save path.")
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
def main():
|
||||
save_path = Path(args.save)
|
||||
save_dir = save_path.parent
|
||||
name = args.name
|
||||
save_dir.mkdir(parents=True, exist_ok=True)
|
||||
assert not save_path.exists(), "{:} already exists".format(save_path)
|
||||
print("torchvision version : {:}".format(torchvision.__version__))
|
||||
|
||||
if name == "cifar10":
|
||||
dataset = dset.CIFAR10(args.root, train=True, download=True)
|
||||
elif name == "cifar100":
|
||||
dataset = dset.CIFAR100(args.root, train=True, download=True)
|
||||
elif name == "imagenet-1k":
|
||||
dataset = dset.ImageFolder(osp.join(args.root, "train"))
|
||||
else:
|
||||
raise TypeError("Unknow dataset : {:}".format(name))
|
||||
|
||||
if hasattr(dataset, "targets"):
|
||||
targets = dataset.targets
|
||||
elif hasattr(dataset, "train_labels"):
|
||||
targets = dataset.train_labels
|
||||
elif hasattr(dataset, "imgs"):
|
||||
targets = [x[1] for x in dataset.imgs]
|
||||
else:
|
||||
raise ValueError("invalid pattern")
|
||||
print("There are {:} samples in this dataset.".format(len(targets)))
|
||||
|
||||
class2index = defaultdict(list)
|
||||
train, valid = [], []
|
||||
random.seed(111)
|
||||
for index, cls in enumerate(targets):
|
||||
class2index[cls].append(index)
|
||||
classes = sorted(list(class2index.keys()))
|
||||
for cls in classes:
|
||||
xlist = class2index[cls]
|
||||
xtrain = random.sample(xlist, int(len(xlist) * args.ratio))
|
||||
xvalid = list(set(xlist) - set(xtrain))
|
||||
train += xtrain
|
||||
valid += xvalid
|
||||
train.sort()
|
||||
valid.sort()
|
||||
## for statistics
|
||||
class2numT, class2numV = defaultdict(int), defaultdict(int)
|
||||
for index in train:
|
||||
class2numT[targets[index]] += 1
|
||||
for index in valid:
|
||||
class2numV[targets[index]] += 1
|
||||
class2numT, class2numV = dict(class2numT), dict(class2numV)
|
||||
torch.save(
|
||||
{
|
||||
"train": train,
|
||||
"valid": valid,
|
||||
"class2numTrain": class2numT,
|
||||
"class2numValid": class2numV,
|
||||
},
|
||||
save_path,
|
||||
)
|
||||
print("-" * 80)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Reference in New Issue
Block a user