Refine lib -> xautodl
This commit is contained in:
@@ -27,8 +27,8 @@ from xautodl.datasets.synthetic_core import get_synthetic_env, EnvSampler
|
||||
from xautodl.models.xcore import get_model
|
||||
from xautodl.xlayers import super_core, trunc_normal_
|
||||
|
||||
from xautodl.lfna_utils import lfna_setup, train_model, TimeData
|
||||
from xautodl.lfna_meta_model import LFNA_Meta
|
||||
from lfna_utils import lfna_setup, train_model, TimeData
|
||||
from lfna_meta_model import LFNA_Meta
|
||||
|
||||
|
||||
def epoch_train(loader, meta_model, base_model, optimizer, criterion, device, logger):
|
||||
|
@@ -4,8 +4,8 @@
|
||||
import copy
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
from procedures import prepare_seed, prepare_logger
|
||||
from datasets.synthetic_core import get_synthetic_env
|
||||
from xautodl.procedures import prepare_seed, prepare_logger
|
||||
from xautodl.datasets.synthetic_core import get_synthetic_env
|
||||
|
||||
|
||||
def lfna_setup(args):
|
||||
|
@@ -665,7 +665,7 @@ if __name__ == "__main__":
|
||||
len(args.datasets), len(args.xpaths), len(args.splits)
|
||||
)
|
||||
)
|
||||
if args.workers <= 0:
|
||||
if args.workers < 0:
|
||||
raise ValueError("invalid number of workers : {:}".format(args.workers))
|
||||
|
||||
target_indexes = filter_indexes(
|
||||
@@ -675,7 +675,7 @@ if __name__ == "__main__":
|
||||
assert torch.cuda.is_available(), "CUDA is not available."
|
||||
torch.backends.cudnn.enabled = True
|
||||
torch.backends.cudnn.deterministic = True
|
||||
torch.set_num_threads(args.workers)
|
||||
torch.set_num_threads(args.workers if args.workers > 0 else 1)
|
||||
|
||||
main(
|
||||
save_dir,
|
||||
|
@@ -1,6 +1,10 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.01 #
|
||||
#####################################################
|
||||
# python exps/prepare.py --name cifar10 --root $TORCH_HOME/cifar.python --save ./data/cifar10.split.pth
|
||||
# python exps/prepare.py --name cifar100 --root $TORCH_HOME/cifar.python --save ./data/cifar100.split.pth
|
||||
# python exps/prepare.py --name imagenet-1k --root $TORCH_HOME/ILSVRC2012 --save ./data/imagenet-1k.split.pth
|
||||
#####################################################
|
||||
import sys, time, torch, random, argparse
|
||||
from collections import defaultdict
|
||||
import os.path as osp
|
||||
@@ -12,9 +16,6 @@ from pathlib import Path
|
||||
import torchvision
|
||||
import torchvision.datasets as dset
|
||||
|
||||
lib_dir = (Path(__file__).parent / ".." / "lib").resolve()
|
||||
if str(lib_dir) not in sys.path:
|
||||
sys.path.insert(0, str(lib_dir))
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Prepare splits for searching",
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
@@ -35,9 +36,9 @@ def main():
|
||||
print("torchvision version : {:}".format(torchvision.__version__))
|
||||
|
||||
if name == "cifar10":
|
||||
dataset = dset.CIFAR10(args.root, train=True)
|
||||
dataset = dset.CIFAR10(args.root, train=True, download=True)
|
||||
elif name == "cifar100":
|
||||
dataset = dset.CIFAR100(args.root, train=True)
|
||||
dataset = dset.CIFAR100(args.root, train=True, download=True)
|
||||
elif name == "imagenet-1k":
|
||||
dataset = dset.ImageFolder(osp.join(args.root, "train"))
|
||||
else:
|
Reference in New Issue
Block a user