update TF models (beta version)
This commit is contained in:
1
lib/tf_optimizers/__init__.py
Normal file
1
lib/tf_optimizers/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
from .weight_decay_optimizers import AdamW, SGDW
|
422
lib/tf_optimizers/weight_decay_optimizers.py
Normal file
422
lib/tf_optimizers/weight_decay_optimizers.py
Normal file
@@ -0,0 +1,422 @@
|
||||
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Base class to make optimizers weight decay ready."""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
class DecoupledWeightDecayExtension(object):
|
||||
"""This class allows to extend optimizers with decoupled weight decay.
|
||||
|
||||
It implements the decoupled weight decay described by Loshchilov & Hutter
|
||||
(https://arxiv.org/pdf/1711.05101.pdf), in which the weight decay is
|
||||
decoupled from the optimization steps w.r.t. to the loss function.
|
||||
For SGD variants, this simplifies hyperparameter search since it decouples
|
||||
the settings of weight decay and learning rate.
|
||||
For adaptive gradient algorithms, it regularizes variables with large
|
||||
gradients more than L2 regularization would, which was shown to yield
|
||||
better training loss and generalization error in the paper above.
|
||||
|
||||
This class alone is not an optimizer but rather extends existing
|
||||
optimizers with decoupled weight decay. We explicitly define the two
|
||||
examples used in the above paper (SGDW and AdamW), but in general this
|
||||
can extend any OptimizerX by using
|
||||
`extend_with_decoupled_weight_decay(
|
||||
OptimizerX, weight_decay=weight_decay)`.
|
||||
In order for it to work, it must be the first class the Optimizer with
|
||||
weight decay inherits from, e.g.
|
||||
|
||||
```python
|
||||
class AdamW(DecoupledWeightDecayExtension, tf.keras.optimizers.Adam):
|
||||
def __init__(self, weight_decay, *args, **kwargs):
|
||||
super(AdamW, self).__init__(weight_decay, *args, **kwargs).
|
||||
```
|
||||
|
||||
Note: this extension decays weights BEFORE applying the update based
|
||||
on the gradient, i.e. this extension only has the desired behaviour for
|
||||
optimizers which do not depend on the value of'var' in the update step!
|
||||
|
||||
Note: when applying a decay to the learning rate, be sure to manually apply
|
||||
the decay to the `weight_decay` as well. For example:
|
||||
|
||||
```python
|
||||
step = tf.Variable(0, trainable=False)
|
||||
schedule = tf.optimizers.schedules.PiecewiseConstantDecay(
|
||||
[10000, 15000], [1e-0, 1e-1, 1e-2])
|
||||
# lr and wd can be a function or a tensor
|
||||
lr = 1e-1 * schedule(step)
|
||||
wd = lambda: 1e-4 * schedule(step)
|
||||
|
||||
# ...
|
||||
|
||||
optimizer = tfa.optimizers.AdamW(learning_rate=lr, weight_decay=wd)
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self, weight_decay, **kwargs):
|
||||
"""Extension class that adds weight decay to an optimizer.
|
||||
|
||||
Args:
|
||||
weight_decay: A `Tensor` or a floating point value, the factor by
|
||||
which a variable is decayed in the update step.
|
||||
**kwargs: Optional list or tuple or set of `Variable` objects to
|
||||
decay.
|
||||
"""
|
||||
wd = kwargs.pop('weight_decay', weight_decay)
|
||||
super(DecoupledWeightDecayExtension, self).__init__(**kwargs)
|
||||
self._decay_var_list = None # is set in minimize or apply_gradients
|
||||
self._set_hyper('weight_decay', wd)
|
||||
|
||||
def get_config(self):
|
||||
config = super(DecoupledWeightDecayExtension, self).get_config()
|
||||
config.update({
|
||||
'weight_decay':
|
||||
self._serialize_hyperparameter('weight_decay'),
|
||||
})
|
||||
return config
|
||||
|
||||
def minimize(self,
|
||||
loss,
|
||||
var_list,
|
||||
grad_loss=None,
|
||||
name=None,
|
||||
decay_var_list=None):
|
||||
"""Minimize `loss` by updating `var_list`.
|
||||
|
||||
This method simply computes gradient using `tf.GradientTape` and calls
|
||||
`apply_gradients()`. If you want to process the gradient before
|
||||
applying then call `tf.GradientTape` and `apply_gradients()` explicitly
|
||||
instead of using this function.
|
||||
|
||||
Args:
|
||||
loss: A callable taking no arguments which returns the value to
|
||||
minimize.
|
||||
var_list: list or tuple of `Variable` objects to update to
|
||||
minimize `loss`, or a callable returning the list or tuple of
|
||||
`Variable` objects. Use callable when the variable list would
|
||||
otherwise be incomplete before `minimize` since the variables
|
||||
are created at the first time `loss` is called.
|
||||
grad_loss: Optional. A `Tensor` holding the gradient computed for
|
||||
`loss`.
|
||||
decay_var_list: Optional list of variables to be decayed. Defaults
|
||||
to all variables in var_list.
|
||||
name: Optional name for the returned operation.
|
||||
Returns:
|
||||
An Operation that updates the variables in `var_list`. If
|
||||
`global_step` was not `None`, that operation also increments
|
||||
`global_step`.
|
||||
Raises:
|
||||
ValueError: If some of the variables are not `Variable` objects.
|
||||
"""
|
||||
self._decay_var_list = set(decay_var_list) if decay_var_list else False
|
||||
return super(DecoupledWeightDecayExtension, self).minimize(
|
||||
loss, var_list=var_list, grad_loss=grad_loss, name=name)
|
||||
|
||||
def apply_gradients(self, grads_and_vars, name=None, decay_var_list=None):
|
||||
"""Apply gradients to variables.
|
||||
|
||||
This is the second part of `minimize()`. It returns an `Operation` that
|
||||
applies gradients.
|
||||
|
||||
Args:
|
||||
grads_and_vars: List of (gradient, variable) pairs.
|
||||
name: Optional name for the returned operation. Default to the
|
||||
name passed to the `Optimizer` constructor.
|
||||
decay_var_list: Optional list of variables to be decayed. Defaults
|
||||
to all variables in var_list.
|
||||
Returns:
|
||||
An `Operation` that applies the specified gradients. If
|
||||
`global_step` was not None, that operation also increments
|
||||
`global_step`.
|
||||
Raises:
|
||||
TypeError: If `grads_and_vars` is malformed.
|
||||
ValueError: If none of the variables have gradients.
|
||||
"""
|
||||
self._decay_var_list = set(decay_var_list) if decay_var_list else False
|
||||
return super(DecoupledWeightDecayExtension, self).apply_gradients(
|
||||
grads_and_vars, name=name)
|
||||
|
||||
def _decay_weights_op(self, var):
|
||||
if not self._decay_var_list or var in self._decay_var_list:
|
||||
return var.assign_sub(
|
||||
self._get_hyper('weight_decay', var.dtype) * var,
|
||||
self._use_locking)
|
||||
return tf.no_op()
|
||||
|
||||
def _decay_weights_sparse_op(self, var, indices):
|
||||
if not self._decay_var_list or var in self._decay_var_list:
|
||||
update = (-self._get_hyper('weight_decay', var.dtype) * tf.gather(
|
||||
var, indices))
|
||||
return self._resource_scatter_add(var, indices, update)
|
||||
return tf.no_op()
|
||||
|
||||
# Here, we overwrite the apply functions that the base optimizer calls.
|
||||
# super().apply_x resolves to the apply_x function of the BaseOptimizer.
|
||||
|
||||
def _resource_apply_dense(self, grad, var):
|
||||
with tf.control_dependencies([self._decay_weights_op(var)]):
|
||||
return super(DecoupledWeightDecayExtension,
|
||||
self)._resource_apply_dense(grad, var)
|
||||
|
||||
def _resource_apply_sparse(self, grad, var, indices):
|
||||
decay_op = self._decay_weights_sparse_op(var, indices)
|
||||
with tf.control_dependencies([decay_op]):
|
||||
return super(DecoupledWeightDecayExtension,
|
||||
self)._resource_apply_sparse(grad, var, indices)
|
||||
|
||||
|
||||
def extend_with_decoupled_weight_decay(base_optimizer):
|
||||
"""Factory function returning an optimizer class with decoupled weight
|
||||
decay.
|
||||
|
||||
Returns an optimizer class. An instance of the returned class computes the
|
||||
update step of `base_optimizer` and additionally decays the weights.
|
||||
E.g., the class returned by
|
||||
`extend_with_decoupled_weight_decay(tf.keras.optimizers.Adam)` is
|
||||
equivalent to `tfa.optimizers.AdamW`.
|
||||
|
||||
The API of the new optimizer class slightly differs from the API of the
|
||||
base optimizer:
|
||||
- The first argument to the constructor is the weight decay rate.
|
||||
- `minimize` and `apply_gradients` accept the optional keyword argument
|
||||
`decay_var_list`, which specifies the variables that should be decayed.
|
||||
If `None`, all variables that are optimized are decayed.
|
||||
|
||||
Usage example:
|
||||
```python
|
||||
# MyAdamW is a new class
|
||||
MyAdamW = extend_with_decoupled_weight_decay(tf.keras.optimizers.Adam)
|
||||
# Create a MyAdamW object
|
||||
optimizer = MyAdamW(weight_decay=0.001, learning_rate=0.001)
|
||||
# update var1, var2 but only decay var1
|
||||
optimizer.minimize(loss, var_list=[var1, var2], decay_variables=[var1])
|
||||
|
||||
Note: this extension decays weights BEFORE applying the update based
|
||||
on the gradient, i.e. this extension only has the desired behaviour for
|
||||
optimizers which do not depend on the value of 'var' in the update step!
|
||||
|
||||
Note: when applying a decay to the learning rate, be sure to manually apply
|
||||
the decay to the `weight_decay` as well. For example:
|
||||
|
||||
```python
|
||||
step = tf.Variable(0, trainable=False)
|
||||
schedule = tf.optimizers.schedules.PiecewiseConstantDecay(
|
||||
[10000, 15000], [1e-0, 1e-1, 1e-2])
|
||||
# lr and wd can be a function or a tensor
|
||||
lr = 1e-1 * schedule(step)
|
||||
wd = lambda: 1e-4 * schedule(step)
|
||||
|
||||
# ...
|
||||
|
||||
optimizer = tfa.optimizers.AdamW(learning_rate=lr, weight_decay=wd)
|
||||
```
|
||||
|
||||
Note: you might want to register your own custom optimizer using
|
||||
`tf.keras.utils.get_custom_objects()`.
|
||||
|
||||
Args:
|
||||
base_optimizer: An optimizer class that inherits from
|
||||
tf.optimizers.Optimizer.
|
||||
|
||||
Returns:
|
||||
A new optimizer class that inherits from DecoupledWeightDecayExtension
|
||||
and base_optimizer.
|
||||
"""
|
||||
|
||||
class OptimizerWithDecoupledWeightDecay(DecoupledWeightDecayExtension,
|
||||
base_optimizer):
|
||||
"""Base_optimizer with decoupled weight decay.
|
||||
|
||||
This class computes the update step of `base_optimizer` and
|
||||
additionally decays the variable with the weight decay being
|
||||
decoupled from the optimization steps w.r.t. to the loss
|
||||
function, as described by Loshchilov & Hutter
|
||||
(https://arxiv.org/pdf/1711.05101.pdf). For SGD variants, this
|
||||
simplifies hyperparameter search since it decouples the settings
|
||||
of weight decay and learning rate. For adaptive gradient
|
||||
algorithms, it regularizes variables with large gradients more
|
||||
than L2 regularization would, which was shown to yield better
|
||||
training loss and generalization error in the paper above.
|
||||
"""
|
||||
|
||||
def __init__(self, weight_decay, *args, **kwargs):
|
||||
# super delegation is necessary here
|
||||
super(OptimizerWithDecoupledWeightDecay, self).__init__(
|
||||
weight_decay, *args, **kwargs)
|
||||
|
||||
return OptimizerWithDecoupledWeightDecay
|
||||
|
||||
|
||||
class SGDW(DecoupledWeightDecayExtension, tf.keras.optimizers.SGD):
|
||||
"""Optimizer that implements the Momentum algorithm with weight_decay.
|
||||
|
||||
This is an implementation of the SGDW optimizer described in "Decoupled
|
||||
Weight Decay Regularization" by Loshchilov & Hutter
|
||||
(https://arxiv.org/abs/1711.05101)
|
||||
([pdf])(https://arxiv.org/pdf/1711.05101.pdf).
|
||||
It computes the update step of `tf.keras.optimizers.SGD` and additionally
|
||||
decays the variable. Note that this is different from adding
|
||||
L2 regularization on the variables to the loss. Decoupling the weight decay
|
||||
from other hyperparameters (in particular the learning rate) simplifies
|
||||
hyperparameter search.
|
||||
|
||||
For further information see the documentation of the SGD Optimizer.
|
||||
|
||||
This optimizer can also be instantiated as
|
||||
```python
|
||||
extend_with_decoupled_weight_decay(tf.keras.optimizers.SGD,
|
||||
weight_decay=weight_decay)
|
||||
```
|
||||
|
||||
Note: when applying a decay to the learning rate, be sure to manually apply
|
||||
the decay to the `weight_decay` as well. For example:
|
||||
|
||||
```python
|
||||
step = tf.Variable(0, trainable=False)
|
||||
schedule = tf.optimizers.schedules.PiecewiseConstantDecay(
|
||||
[10000, 15000], [1e-0, 1e-1, 1e-2])
|
||||
# lr and wd can be a function or a tensor
|
||||
lr = 1e-1 * schedule(step)
|
||||
wd = lambda: 1e-4 * schedule(step)
|
||||
|
||||
# ...
|
||||
|
||||
optimizer = tfa.optimizers.SGDW(
|
||||
learning_rate=lr, weight_decay=wd, momentum=0.9)
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
weight_decay,
|
||||
learning_rate=0.001,
|
||||
momentum=0.0,
|
||||
nesterov=False,
|
||||
name='SGDW',
|
||||
**kwargs):
|
||||
"""Construct a new SGDW optimizer.
|
||||
|
||||
For further information see the documentation of the SGD Optimizer.
|
||||
|
||||
Args:
|
||||
learning_rate: float hyperparameter >= 0. Learning rate.
|
||||
momentum: float hyperparameter >= 0 that accelerates SGD in the
|
||||
relevant direction and dampens oscillations.
|
||||
nesterov: boolean. Whether to apply Nesterov momentum.
|
||||
name: Optional name prefix for the operations created when applying
|
||||
gradients. Defaults to 'SGD'.
|
||||
**kwargs: keyword arguments. Allowed to be {`clipnorm`,
|
||||
`clipvalue`, `lr`, `decay`}. `clipnorm` is clip gradients by
|
||||
norm; `clipvalue` is clip gradients by value, `decay` is
|
||||
included for backward compatibility to allow time inverse decay
|
||||
of learning rate. `lr` is included for backward compatibility,
|
||||
recommended to use `learning_rate` instead.
|
||||
"""
|
||||
super(SGDW, self).__init__(
|
||||
weight_decay,
|
||||
learning_rate=learning_rate,
|
||||
momentum=momentum,
|
||||
nesterov=nesterov,
|
||||
name=name,
|
||||
**kwargs)
|
||||
|
||||
|
||||
class AdamW(DecoupledWeightDecayExtension, tf.keras.optimizers.Adam):
|
||||
"""Optimizer that implements the Adam algorithm with weight decay.
|
||||
|
||||
This is an implementation of the AdamW optimizer described in "Decoupled
|
||||
Weight Decay Regularization" by Loshchilov & Hutter
|
||||
(https://arxiv.org/abs/1711.05101)
|
||||
([pdf])(https://arxiv.org/pdf/1711.05101.pdf).
|
||||
|
||||
It computes the update step of `tf.keras.optimizers.Adam` and additionally
|
||||
decays the variable. Note that this is different from adding L2
|
||||
regularization on the variables to the loss: it regularizes variables with
|
||||
large gradients more than L2 regularization would, which was shown to yield
|
||||
better training loss and generalization error in the paper above.
|
||||
|
||||
For further information see the documentation of the Adam Optimizer.
|
||||
|
||||
This optimizer can also be instantiated as
|
||||
```python
|
||||
extend_with_decoupled_weight_decay(tf.keras.optimizers.Adam,
|
||||
weight_decay=weight_decay)
|
||||
```
|
||||
|
||||
Note: when applying a decay to the learning rate, be sure to manually apply
|
||||
the decay to the `weight_decay` as well. For example:
|
||||
|
||||
```python
|
||||
step = tf.Variable(0, trainable=False)
|
||||
schedule = tf.optimizers.schedules.PiecewiseConstantDecay(
|
||||
[10000, 15000], [1e-0, 1e-1, 1e-2])
|
||||
# lr and wd can be a function or a tensor
|
||||
lr = 1e-1 * schedule(step)
|
||||
wd = lambda: 1e-4 * schedule(step)
|
||||
|
||||
# ...
|
||||
|
||||
optimizer = tfa.optimizers.AdamW(learning_rate=lr, weight_decay=wd)
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
weight_decay,
|
||||
learning_rate=0.001,
|
||||
beta_1=0.9,
|
||||
beta_2=0.999,
|
||||
epsilon=1e-07,
|
||||
amsgrad=False,
|
||||
name="AdamW",
|
||||
**kwargs):
|
||||
"""Construct a new AdamW optimizer.
|
||||
|
||||
For further information see the documentation of the Adam Optimizer.
|
||||
|
||||
Args:
|
||||
weight_decay: A Tensor or a floating point value. The weight decay.
|
||||
learning_rate: A Tensor or a floating point value. The learning
|
||||
rate.
|
||||
beta_1: A float value or a constant float tensor. The exponential
|
||||
decay rate for the 1st moment estimates.
|
||||
beta_2: A float value or a constant float tensor. The exponential
|
||||
decay rate for the 2nd moment estimates.
|
||||
epsilon: A small constant for numerical stability. This epsilon is
|
||||
"epsilon hat" in the Kingma and Ba paper (in the formula just
|
||||
before Section 2.1), not the epsilon in Algorithm 1 of the
|
||||
paper.
|
||||
amsgrad: boolean. Whether to apply AMSGrad variant of this
|
||||
algorithm from the paper "On the Convergence of Adam and
|
||||
beyond".
|
||||
name: Optional name for the operations created when applying
|
||||
gradients. Defaults to "AdamW".
|
||||
**kwargs: keyword arguments. Allowed to be {`clipnorm`,
|
||||
`clipvalue`, `lr`, `decay`}. `clipnorm` is clip gradients by
|
||||
norm; `clipvalue` is clip gradients by value, `decay` is
|
||||
included for backward compatibility to allow time inverse decay
|
||||
of learning rate. `lr` is included for backward compatibility,
|
||||
recommended to use `learning_rate` instead.
|
||||
"""
|
||||
super(AdamW, self).__init__(
|
||||
weight_decay,
|
||||
learning_rate=learning_rate,
|
||||
beta_1=beta_1,
|
||||
beta_2=beta_2,
|
||||
epsilon=epsilon,
|
||||
amsgrad=amsgrad,
|
||||
name=name,
|
||||
**kwargs)
|
Reference in New Issue
Block a user