Complete Super Linear
This commit is contained in:
@@ -41,14 +41,14 @@ class TestBasicSpace(unittest.TestCase):
|
||||
def test_continuous(self):
|
||||
random.seed(999)
|
||||
space = Continuous(0, 1)
|
||||
self.assertGreaterEqual(space.random(), 0)
|
||||
self.assertGreaterEqual(1, space.random())
|
||||
self.assertGreaterEqual(space.random().value, 0)
|
||||
self.assertGreaterEqual(1, space.random().value)
|
||||
|
||||
lower, upper = 1.5, 4.6
|
||||
space = Continuous(lower, upper, log=False)
|
||||
values = []
|
||||
for i in range(1000000):
|
||||
x = space.random()
|
||||
x = space.random().value
|
||||
self.assertGreaterEqual(x, lower)
|
||||
self.assertGreaterEqual(upper, x)
|
||||
values.append(x)
|
||||
@@ -89,7 +89,7 @@ class TestBasicSpace(unittest.TestCase):
|
||||
Categorical(4, Categorical(5, 6, 7, Categorical(8, 9), 10), 11),
|
||||
12,
|
||||
)
|
||||
print(nested_space)
|
||||
print("\nThe nested search space:\n{:}".format(nested_space))
|
||||
for i in range(1, 13):
|
||||
self.assertTrue(nested_space.has(i))
|
||||
|
||||
@@ -102,6 +102,19 @@ class TestAbstractSpace(unittest.TestCase):
|
||||
"""Test the abstract search spaces."""
|
||||
|
||||
def test_continous(self):
|
||||
print("")
|
||||
space = Continuous(0, 1)
|
||||
self.assertEqual(space, space.abstract())
|
||||
print("The abstract search space for Continuous: {:}".format(space.abstract()))
|
||||
|
||||
space = Categorical(1, 2, 3)
|
||||
self.assertEqual(len(space.abstract()), 3)
|
||||
print(space.abstract())
|
||||
|
||||
nested_space = Categorical(
|
||||
Categorical(1, 2, 3),
|
||||
Categorical(4, Categorical(5, 6, 7, Categorical(8, 9), 10), 11),
|
||||
12,
|
||||
)
|
||||
abstract_nested_space = nested_space.abstract()
|
||||
print("The abstract nested search space:\n{:}".format(abstract_nested_space))
|
||||
|
@@ -25,6 +25,26 @@ class TestSuperLinear(unittest.TestCase):
|
||||
out_features = spaces.Categorical(12, 24, 36)
|
||||
bias = spaces.Categorical(True, False)
|
||||
model = super_core.SuperLinear(10, out_features, bias=bias)
|
||||
print(model)
|
||||
print("The simple super linear module is:\n{:}".format(model))
|
||||
|
||||
print(model.super_run_type)
|
||||
print(model.abstract_search_space())
|
||||
self.assertTrue(model.bias)
|
||||
|
||||
inputs = torch.rand(32, 10)
|
||||
print("Input shape: {:}".format(inputs.shape))
|
||||
print("Weight shape: {:}".format(model._super_weight.shape))
|
||||
print("Bias shape: {:}".format(model._super_bias.shape))
|
||||
outputs = model(inputs)
|
||||
self.assertEqual(tuple(outputs.shape), (32, 36))
|
||||
|
||||
abstract_space = model.abstract_search_space
|
||||
abstract_child = abstract_space.random()
|
||||
print("The abstract searc space:\n{:}".format(abstract_space))
|
||||
print("The abstract child program:\n{:}".format(abstract_child))
|
||||
|
||||
model.set_super_run_type(super_core.SuperRunMode.Candidate)
|
||||
model.apply_candiate(abstract_child)
|
||||
|
||||
output_shape = (32, abstract_child["_out_features"].value)
|
||||
outputs = model(inputs)
|
||||
self.assertEqual(tuple(outputs.shape), output_shape)
|
||||
|
Reference in New Issue
Block a user