init
This commit is contained in:
@@ -1,397 +0,0 @@
|
||||
import os, sys, time, glob, random, argparse
|
||||
import numpy as np
|
||||
from copy import deepcopy
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torchvision.datasets as dset
|
||||
import torch.backends.cudnn as cudnn
|
||||
import torchvision.transforms as transforms
|
||||
from pathlib import Path
|
||||
lib_dir = (Path(__file__).parent / '..' / 'lib').resolve()
|
||||
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
||||
from utils import AverageMeter, time_string, convert_secs2time
|
||||
from utils import print_log, obtain_accuracy
|
||||
from utils import Cutout, count_parameters_in_MB
|
||||
from nas import Network, NetworkACC2, NetworkV3, NetworkV4, NetworkV5, NetworkFACC1
|
||||
from nas import return_alphas_str
|
||||
from train_utils import main_procedure
|
||||
from scheduler import load_config
|
||||
|
||||
Networks = {'base': Network, 'acc2': NetworkACC2, 'facc1': NetworkFACC1, 'NetworkV3': NetworkV3, 'NetworkV4': NetworkV4, 'NetworkV5': NetworkV5}
|
||||
|
||||
|
||||
parser = argparse.ArgumentParser("cifar")
|
||||
parser.add_argument('--data_path', type=str, help='Path to dataset')
|
||||
parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100'], help='Choose between Cifar10/100 and ImageNet.')
|
||||
parser.add_argument('--arch', type=str, choices=Networks.keys(), help='Choose networks.')
|
||||
parser.add_argument('--batch_size', type=int, help='the batch size')
|
||||
parser.add_argument('--learning_rate_max', type=float, help='initial learning rate')
|
||||
parser.add_argument('--learning_rate_min', type=float, help='minimum learning rate')
|
||||
parser.add_argument('--tau_max', type=float, help='initial tau')
|
||||
parser.add_argument('--tau_min', type=float, help='minimum tau')
|
||||
parser.add_argument('--momentum', type=float, help='momentum')
|
||||
parser.add_argument('--weight_decay', type=float, help='weight decay')
|
||||
parser.add_argument('--epochs', type=int, help='num of training epochs')
|
||||
# architecture leraning rate
|
||||
parser.add_argument('--arch_learning_rate', type=float, default=3e-4, help='learning rate for arch encoding')
|
||||
parser.add_argument('--arch_weight_decay', type=float, default=1e-3, help='weight decay for arch encoding')
|
||||
#
|
||||
parser.add_argument('--init_channels', type=int, help='num of init channels')
|
||||
parser.add_argument('--layers', type=int, help='total number of layers')
|
||||
#
|
||||
parser.add_argument('--cutout', type=int, help='cutout length, negative means no cutout')
|
||||
parser.add_argument('--grad_clip', type=float, help='gradient clipping')
|
||||
parser.add_argument('--model_config', type=str , help='the model configuration')
|
||||
|
||||
# resume
|
||||
parser.add_argument('--resume', type=str , help='the resume path')
|
||||
parser.add_argument('--only_base',action='store_true', default=False, help='only train the searched model')
|
||||
# split data
|
||||
parser.add_argument('--validate', action='store_true', default=False, help='split train-data int train/val or not')
|
||||
parser.add_argument('--train_portion', type=float, default=0.5, help='portion of training data')
|
||||
# log
|
||||
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
|
||||
parser.add_argument('--save_path', type=str, help='Folder to save checkpoints and log.')
|
||||
parser.add_argument('--print_freq', type=int, help='print frequency (default: 200)')
|
||||
parser.add_argument('--manualSeed', type=int, help='manual seed')
|
||||
args = parser.parse_args()
|
||||
|
||||
assert torch.cuda.is_available(), 'torch.cuda is not available'
|
||||
|
||||
if args.manualSeed is None:
|
||||
args.manualSeed = random.randint(1, 10000)
|
||||
random.seed(args.manualSeed)
|
||||
cudnn.benchmark = True
|
||||
cudnn.enabled = True
|
||||
torch.manual_seed(args.manualSeed)
|
||||
torch.cuda.manual_seed_all(args.manualSeed)
|
||||
|
||||
|
||||
def main():
|
||||
|
||||
# Init logger
|
||||
args.save_path = os.path.join(args.save_path, 'seed-{:}'.format(args.manualSeed))
|
||||
if not os.path.isdir(args.save_path):
|
||||
os.makedirs(args.save_path)
|
||||
log = open(os.path.join(args.save_path, 'log-seed-{:}.txt'.format(args.manualSeed)), 'w')
|
||||
print_log('save path : {}'.format(args.save_path), log)
|
||||
state = {k: v for k, v in args._get_kwargs()}
|
||||
print_log(state, log)
|
||||
print_log("Random Seed: {}".format(args.manualSeed), log)
|
||||
print_log("Python version : {}".format(sys.version.replace('\n', ' ')), log)
|
||||
print_log("Torch version : {}".format(torch.__version__), log)
|
||||
print_log("CUDA version : {}".format(torch.version.cuda), log)
|
||||
print_log("cuDNN version : {}".format(cudnn.version()), log)
|
||||
print_log("Num of GPUs : {}".format(torch.cuda.device_count()), log)
|
||||
args.dataset = args.dataset.lower()
|
||||
|
||||
# Mean + Std
|
||||
if args.dataset == 'cifar10':
|
||||
mean = [x / 255 for x in [125.3, 123.0, 113.9]]
|
||||
std = [x / 255 for x in [63.0, 62.1, 66.7]]
|
||||
elif args.dataset == 'cifar100':
|
||||
mean = [x / 255 for x in [129.3, 124.1, 112.4]]
|
||||
std = [x / 255 for x in [68.2, 65.4, 70.4]]
|
||||
else:
|
||||
raise TypeError("Unknow dataset : {:}".format(args.dataset))
|
||||
# Data Argumentation
|
||||
if args.dataset == 'cifar10' or args.dataset == 'cifar100':
|
||||
lists = [transforms.RandomHorizontalFlip(), transforms.RandomCrop(32, padding=4), transforms.ToTensor(),
|
||||
transforms.Normalize(mean, std)]
|
||||
if args.cutout > 0 : lists += [Cutout(args.cutout)]
|
||||
train_transform = transforms.Compose(lists)
|
||||
test_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean, std)])
|
||||
else:
|
||||
raise TypeError("Unknow dataset : {:}".format(args.dataset))
|
||||
# Datasets
|
||||
if args.dataset == 'cifar10':
|
||||
train_data = dset.CIFAR10(args.data_path, train= True, transform=train_transform, download=True)
|
||||
test_data = dset.CIFAR10(args.data_path, train=False, transform=test_transform , download=True)
|
||||
num_classes = 10
|
||||
elif args.dataset == 'cifar100':
|
||||
train_data = dset.CIFAR100(args.data_path, train= True, transform=train_transform, download=True)
|
||||
test_data = dset.CIFAR100(args.data_path, train=False, transform=test_transform , download=True)
|
||||
num_classes = 100
|
||||
else:
|
||||
raise TypeError("Unknow dataset : {:}".format(args.dataset))
|
||||
# Data Loader
|
||||
if args.validate:
|
||||
indices = list(range(len(train_data)))
|
||||
split = int(args.train_portion * len(indices))
|
||||
random.shuffle(indices)
|
||||
train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size,
|
||||
sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]),
|
||||
pin_memory=True, num_workers=args.workers)
|
||||
test_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size,
|
||||
sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[split:]),
|
||||
pin_memory=True, num_workers=args.workers)
|
||||
else:
|
||||
train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True)
|
||||
test_loader = torch.utils.data.DataLoader(test_data, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True)
|
||||
|
||||
# network and criterion
|
||||
criterion = torch.nn.CrossEntropyLoss().cuda()
|
||||
basemodel = Networks[args.arch](args.init_channels, num_classes, args.layers)
|
||||
model = torch.nn.DataParallel(basemodel).cuda()
|
||||
print_log("Parameter size = {:.3f} MB".format(count_parameters_in_MB(basemodel.base_parameters())), log)
|
||||
print_log("Train-transformation : {:}\nTest--transformation : {:}".format(train_transform, test_transform), log)
|
||||
|
||||
# optimizer and LR-scheduler
|
||||
base_optimizer = torch.optim.SGD (basemodel.base_parameters(), args.learning_rate_max, momentum=args.momentum, weight_decay=args.weight_decay)
|
||||
#base_optimizer = torch.optim.Adam(basemodel.base_parameters(), lr=args.learning_rate_max, betas=(0.5, 0.999), weight_decay=args.weight_decay)
|
||||
base_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(base_optimizer, float(args.epochs), eta_min=args.learning_rate_min)
|
||||
arch_optimizer = torch.optim.Adam(basemodel.arch_parameters(), lr=args.arch_learning_rate, betas=(0.5, 0.999), weight_decay=args.arch_weight_decay)
|
||||
|
||||
# snapshot
|
||||
checkpoint_path = os.path.join(args.save_path, 'checkpoint-search.pth')
|
||||
if args.resume is not None and os.path.isfile(args.resume):
|
||||
checkpoint = torch.load(args.resume)
|
||||
start_epoch = checkpoint['epoch']
|
||||
basemodel.load_state_dict( checkpoint['state_dict'] )
|
||||
base_optimizer.load_state_dict( checkpoint['base_optimizer'] )
|
||||
arch_optimizer.load_state_dict( checkpoint['arch_optimizer'] )
|
||||
base_scheduler.load_state_dict( checkpoint['base_scheduler'] )
|
||||
genotypes = checkpoint['genotypes']
|
||||
print_log('Load resume from {:} with start-epoch = {:}'.format(args.resume, start_epoch), log)
|
||||
elif os.path.isfile(checkpoint_path):
|
||||
checkpoint = torch.load(checkpoint_path)
|
||||
start_epoch = checkpoint['epoch']
|
||||
basemodel.load_state_dict( checkpoint['state_dict'] )
|
||||
base_optimizer.load_state_dict( checkpoint['base_optimizer'] )
|
||||
arch_optimizer.load_state_dict( checkpoint['arch_optimizer'] )
|
||||
base_scheduler.load_state_dict( checkpoint['base_scheduler'] )
|
||||
genotypes = checkpoint['genotypes']
|
||||
print_log('Load checkpoint from {:} with start-epoch = {:}'.format(checkpoint_path, start_epoch), log)
|
||||
else:
|
||||
start_epoch, genotypes = 0, {}
|
||||
print_log('Train model-search from scratch.', log)
|
||||
|
||||
config = load_config(args.model_config)
|
||||
|
||||
if args.only_base:
|
||||
print_log('---- Only Train the Searched Model ----', log)
|
||||
main_procedure(config, args.dataset, args.data_path, args, basemodel.genotype(), 36, 20, log)
|
||||
return
|
||||
|
||||
# Main loop
|
||||
start_time, epoch_time, total_train_time = time.time(), AverageMeter(), 0
|
||||
for epoch in range(start_epoch, args.epochs):
|
||||
base_scheduler.step()
|
||||
|
||||
basemodel.set_tau( args.tau_max - epoch*1.0/args.epochs*(args.tau_max-args.tau_min) )
|
||||
#if epoch + 1 == args.epochs:
|
||||
# torch.cuda.empty_cache()
|
||||
# basemodel.set_gumbel(False)
|
||||
|
||||
need_time = convert_secs2time(epoch_time.val * (args.epochs-epoch), True)
|
||||
print_log('\n==>>{:s} [Epoch={:03d}/{:03d}] {:s} [LR={:6.4f} ~ {:6.4f}] [Batch={:d}], tau={:}'.format(time_string(), epoch, args.epochs, need_time, min(base_scheduler.get_lr()), max(base_scheduler.get_lr()), args.batch_size, basemodel.get_tau()), log)
|
||||
|
||||
genotype = basemodel.genotype()
|
||||
print_log('genotype = {:}'.format(genotype), log)
|
||||
|
||||
print_log('{:03d}/{:03d} alphas :\n{:}'.format(epoch, args.epochs, return_alphas_str(basemodel)), log)
|
||||
|
||||
# training
|
||||
if epoch + 1 == args.epochs:
|
||||
train_acc1, train_acc5, train_obj, train_time \
|
||||
= train_joint(train_loader, test_loader, model, criterion, base_optimizer, arch_optimizer, epoch, log)
|
||||
total_train_time += train_time
|
||||
else:
|
||||
train_acc1, train_acc5, train_obj, train_time \
|
||||
= train_base(train_loader, None, model, criterion, base_optimizer, None, epoch, log)
|
||||
total_train_time += train_time
|
||||
Arch__acc1, Arch__acc5, Arch__obj, train_time \
|
||||
= train_arch(None , test_loader, model, criterion, None, arch_optimizer, epoch, log)
|
||||
total_train_time += train_time
|
||||
# validation
|
||||
valid_acc1, valid_acc5, valid_obj = infer(test_loader, model, criterion, epoch, log)
|
||||
print_log('{:03d}/{:03d}, Train-Accuracy = {:.2f}, Arch-Accuracy = {:.2f}, Test-Accuracy = {:.2f}'.format(epoch, args.epochs, train_acc1, Arch__acc1, valid_acc1), log)
|
||||
|
||||
# save genotype
|
||||
genotypes[epoch] = basemodel.genotype()
|
||||
# save checkpoint
|
||||
torch.save({'epoch' : epoch + 1,
|
||||
'args' : deepcopy(args),
|
||||
'state_dict': basemodel.state_dict(),
|
||||
'genotypes' : genotypes,
|
||||
'base_optimizer' : base_optimizer.state_dict(),
|
||||
'arch_optimizer' : arch_optimizer.state_dict(),
|
||||
'base_scheduler' : base_scheduler.state_dict()},
|
||||
checkpoint_path)
|
||||
print_log('----> Save into {:}'.format(checkpoint_path), log)
|
||||
|
||||
|
||||
# measure elapsed time
|
||||
epoch_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
|
||||
print_log('Finish with training time = {:}'.format( convert_secs2time(total_train_time, True) ), log)
|
||||
|
||||
# clear GPU cache
|
||||
torch.cuda.empty_cache()
|
||||
main_procedure(config, args.dataset, args.data_path, args, basemodel.genotype(), 36, 20, log)
|
||||
log.close()
|
||||
|
||||
|
||||
def train_base(train_queue, _, model, criterion, base_optimizer, __, epoch, log):
|
||||
data_time, batch_time = AverageMeter(), AverageMeter()
|
||||
objs, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter()
|
||||
model.train()
|
||||
|
||||
end = time.time()
|
||||
for step, (inputs, targets) in enumerate(train_queue):
|
||||
batch, C, H, W = inputs.size()
|
||||
|
||||
#inputs, targets = inputs.cuda(), targets.cuda(non_blocking=True)
|
||||
targets = targets.cuda(non_blocking=True)
|
||||
data_time.update(time.time() - end)
|
||||
|
||||
# update the parameters
|
||||
base_optimizer.zero_grad()
|
||||
logits = model(inputs)
|
||||
loss = criterion(logits, targets)
|
||||
|
||||
loss.backward()
|
||||
torch.nn.utils.clip_grad_norm_(model.module.base_parameters(), args.grad_clip)
|
||||
base_optimizer.step()
|
||||
|
||||
prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
|
||||
objs.update(loss.item() , batch)
|
||||
top1.update(prec1.item(), batch)
|
||||
top5.update(prec5.item(), batch)
|
||||
|
||||
# measure elapsed time
|
||||
batch_time.update(time.time() - end)
|
||||
end = time.time()
|
||||
|
||||
if step % args.print_freq == 0 or (step+1) == len(train_queue):
|
||||
Sstr = ' TRAIN-BASE ' + time_string() + ' Epoch: [{:03d}][{:03d}/{:03d}]'.format(epoch, step, len(train_queue))
|
||||
Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time)
|
||||
Lstr = 'Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})'.format(loss=objs, top1=top1, top5=top5)
|
||||
print_log(Sstr + ' ' + Tstr + ' ' + Lstr, log)
|
||||
|
||||
return top1.avg, top5.avg, objs.avg, batch_time.sum
|
||||
|
||||
|
||||
def train_arch(_, valid_queue, model, criterion, __, arch_optimizer, epoch, log):
|
||||
data_time, batch_time = AverageMeter(), AverageMeter()
|
||||
objs, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter()
|
||||
model.train()
|
||||
|
||||
end = time.time()
|
||||
for step, (inputs, targets) in enumerate(valid_queue):
|
||||
batch, C, H, W = inputs.size()
|
||||
|
||||
#inputs, targets = inputs.cuda(), targets.cuda(non_blocking=True)
|
||||
targets = targets.cuda(non_blocking=True)
|
||||
data_time.update(time.time() - end)
|
||||
|
||||
# update the architecture
|
||||
arch_optimizer.zero_grad()
|
||||
outputs = model(inputs)
|
||||
arch_loss = criterion(outputs, targets)
|
||||
arch_loss.backward()
|
||||
arch_optimizer.step()
|
||||
|
||||
prec1, prec5 = obtain_accuracy(outputs.data, targets.data, topk=(1, 5))
|
||||
objs.update(arch_loss.item() , batch)
|
||||
top1.update(prec1.item(), batch)
|
||||
top5.update(prec5.item(), batch)
|
||||
|
||||
# measure elapsed time
|
||||
batch_time.update(time.time() - end)
|
||||
end = time.time()
|
||||
|
||||
if step % args.print_freq == 0 or (step+1) == len(valid_queue):
|
||||
Sstr = ' TRAIN-ARCH ' + time_string() + ' Epoch: [{:03d}][{:03d}/{:03d}]'.format(epoch, step, len(valid_queue))
|
||||
Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time)
|
||||
Lstr = 'Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})'.format(loss=objs, top1=top1, top5=top5)
|
||||
print_log(Sstr + ' ' + Tstr + ' ' + Lstr, log)
|
||||
|
||||
return top1.avg, top5.avg, objs.avg, batch_time.sum
|
||||
|
||||
|
||||
def train_joint(train_queue, valid_queue, model, criterion, base_optimizer, arch_optimizer, epoch, log):
|
||||
data_time, batch_time = AverageMeter(), AverageMeter()
|
||||
objs, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter()
|
||||
model.train()
|
||||
|
||||
valid_iter = iter(valid_queue)
|
||||
end = time.time()
|
||||
for step, (inputs, targets) in enumerate(train_queue):
|
||||
batch, C, H, W = inputs.size()
|
||||
|
||||
#inputs, targets = inputs.cuda(), targets.cuda(non_blocking=True)
|
||||
targets = targets.cuda(non_blocking=True)
|
||||
data_time.update(time.time() - end)
|
||||
|
||||
# get a random minibatch from the search queue with replacement
|
||||
try:
|
||||
input_search, target_search = next(valid_iter)
|
||||
except:
|
||||
valid_iter = iter(valid_queue)
|
||||
input_search, target_search = next(valid_iter)
|
||||
|
||||
target_search = target_search.cuda(non_blocking=True)
|
||||
|
||||
# update the architecture
|
||||
arch_optimizer.zero_grad()
|
||||
output_search = model(input_search)
|
||||
arch_loss = criterion(output_search, target_search)
|
||||
arch_loss.backward()
|
||||
arch_optimizer.step()
|
||||
|
||||
# update the parameters
|
||||
base_optimizer.zero_grad()
|
||||
logits = model(inputs)
|
||||
loss = criterion(logits, targets)
|
||||
|
||||
loss.backward()
|
||||
torch.nn.utils.clip_grad_norm_(model.module.base_parameters(), args.grad_clip)
|
||||
base_optimizer.step()
|
||||
|
||||
prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
|
||||
objs.update(loss.item() , batch)
|
||||
top1.update(prec1.item(), batch)
|
||||
top5.update(prec5.item(), batch)
|
||||
|
||||
# measure elapsed time
|
||||
batch_time.update(time.time() - end)
|
||||
end = time.time()
|
||||
|
||||
if step % args.print_freq == 0 or (step+1) == len(train_queue):
|
||||
Sstr = ' TRAIN-SEARCH ' + time_string() + ' Epoch: [{:03d}][{:03d}/{:03d}]'.format(epoch, step, len(train_queue))
|
||||
Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time)
|
||||
Lstr = 'Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})'.format(loss=objs, top1=top1, top5=top5)
|
||||
print_log(Sstr + ' ' + Tstr + ' ' + Lstr, log)
|
||||
|
||||
return top1.avg, top5.avg, objs.avg, batch_time.sum
|
||||
|
||||
|
||||
def infer(valid_queue, model, criterion, epoch, log):
|
||||
objs, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter()
|
||||
|
||||
model.eval()
|
||||
with torch.no_grad():
|
||||
for step, (inputs, targets) in enumerate(valid_queue):
|
||||
batch, C, H, W = inputs.size()
|
||||
targets = targets.cuda(non_blocking=True)
|
||||
|
||||
logits = model(inputs)
|
||||
loss = criterion(logits, targets)
|
||||
|
||||
prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
|
||||
objs.update(loss.item() , batch)
|
||||
top1.update(prec1.item(), batch)
|
||||
top5.update(prec5.item(), batch)
|
||||
|
||||
if step % args.print_freq == 0 or (step+1) == len(valid_queue):
|
||||
Sstr = ' VALID-SEARCH ' + time_string() + ' Epoch: [{:03d}][{:03d}/{:03d}]'.format(epoch, step, len(valid_queue))
|
||||
Lstr = 'Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})'.format(loss=objs, top1=top1, top5=top5)
|
||||
print_log(Sstr + ' ' + Lstr, log)
|
||||
|
||||
return top1.avg, top5.avg, objs.avg
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
@@ -1,312 +0,0 @@
|
||||
import os, sys, time, glob, random, argparse
|
||||
import numpy as np
|
||||
from copy import deepcopy
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torch.backends.cudnn as cudnn
|
||||
import torchvision.transforms as transforms
|
||||
from pathlib import Path
|
||||
lib_dir = (Path(__file__).parent / '..' / 'lib').resolve()
|
||||
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
||||
from datasets import TieredImageNet, MetaBatchSampler
|
||||
from utils import AverageMeter, time_string, convert_secs2time
|
||||
from utils import print_log, obtain_accuracy
|
||||
from utils import Cutout, count_parameters_in_MB
|
||||
from meta_nas import return_alphas_str, MetaNetwork
|
||||
from train_utils import main_procedure
|
||||
from scheduler import load_config
|
||||
|
||||
Networks = {'meta': MetaNetwork}
|
||||
|
||||
parser = argparse.ArgumentParser("cifar")
|
||||
parser.add_argument('--data_path', type=str, help='Path to dataset')
|
||||
parser.add_argument('--arch', type=str, choices=Networks.keys(), help='Choose networks.')
|
||||
parser.add_argument('--n_way', type=int, help='N-WAY.')
|
||||
parser.add_argument('--k_shot', type=int, help='K-SHOT.')
|
||||
# Learning Parameters
|
||||
parser.add_argument('--learning_rate_max', type=float, help='initial learning rate')
|
||||
parser.add_argument('--learning_rate_min', type=float, help='minimum learning rate')
|
||||
parser.add_argument('--momentum', type=float, help='momentum')
|
||||
parser.add_argument('--weight_decay', type=float, help='weight decay')
|
||||
parser.add_argument('--epochs', type=int, help='num of training epochs')
|
||||
# architecture leraning rate
|
||||
parser.add_argument('--arch_learning_rate', type=float, default=3e-4, help='learning rate for arch encoding')
|
||||
parser.add_argument('--arch_weight_decay', type=float, default=1e-3, help='weight decay for arch encoding')
|
||||
#
|
||||
parser.add_argument('--init_channels', type=int, help='num of init channels')
|
||||
parser.add_argument('--layers', type=int, help='total number of layers')
|
||||
#
|
||||
parser.add_argument('--cutout', type=int, help='cutout length, negative means no cutout')
|
||||
parser.add_argument('--grad_clip', type=float, help='gradient clipping')
|
||||
parser.add_argument('--model_config', type=str , help='the model configuration')
|
||||
|
||||
# resume
|
||||
parser.add_argument('--resume', type=str , help='the resume path')
|
||||
parser.add_argument('--only_base',action='store_true', default=False, help='only train the searched model')
|
||||
# split data
|
||||
parser.add_argument('--validate', action='store_true', default=False, help='split train-data int train/val or not')
|
||||
parser.add_argument('--train_portion', type=float, default=0.5, help='portion of training data')
|
||||
# log
|
||||
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
|
||||
parser.add_argument('--save_path', type=str, help='Folder to save checkpoints and log.')
|
||||
parser.add_argument('--print_freq', type=int, help='print frequency (default: 200)')
|
||||
parser.add_argument('--manualSeed', type=int, help='manual seed')
|
||||
args = parser.parse_args()
|
||||
|
||||
assert torch.cuda.is_available(), 'torch.cuda is not available'
|
||||
|
||||
if args.manualSeed is None:
|
||||
args.manualSeed = random.randint(1, 10000)
|
||||
random.seed(args.manualSeed)
|
||||
cudnn.benchmark = True
|
||||
cudnn.enabled = True
|
||||
torch.manual_seed(args.manualSeed)
|
||||
torch.cuda.manual_seed_all(args.manualSeed)
|
||||
|
||||
|
||||
def main():
|
||||
|
||||
# Init logger
|
||||
args.save_path = os.path.join(args.save_path, 'seed-{:}'.format(args.manualSeed))
|
||||
if not os.path.isdir(args.save_path):
|
||||
os.makedirs(args.save_path)
|
||||
log = open(os.path.join(args.save_path, 'log-seed-{:}.txt'.format(args.manualSeed)), 'w')
|
||||
print_log('save path : {}'.format(args.save_path), log)
|
||||
state = {k: v for k, v in args._get_kwargs()}
|
||||
print_log(state, log)
|
||||
print_log("Random Seed: {}".format(args.manualSeed), log)
|
||||
print_log("Python version : {}".format(sys.version.replace('\n', ' ')), log)
|
||||
print_log("Torch version : {}".format(torch.__version__), log)
|
||||
print_log("CUDA version : {}".format(torch.version.cuda), log)
|
||||
print_log("cuDNN version : {}".format(cudnn.version()), log)
|
||||
print_log("Num of GPUs : {}".format(torch.cuda.device_count()), log)
|
||||
|
||||
# Mean + Std
|
||||
means, stds = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
|
||||
# Data Argumentation
|
||||
lists = [transforms.RandomHorizontalFlip(), transforms.RandomCrop(80, padding=4), transforms.ToTensor(),
|
||||
transforms.Normalize(means, stds)]
|
||||
if args.cutout > 0 : lists += [Cutout(args.cutout)]
|
||||
train_transform = transforms.Compose(lists)
|
||||
test_transform = transforms.Compose([transforms.CenterCrop(80), transforms.ToTensor(), transforms.Normalize(means, stds)])
|
||||
|
||||
train_data = TieredImageNet(args.data_path, 'train', train_transform)
|
||||
test_data = TieredImageNet(args.data_path, 'val' , test_transform )
|
||||
|
||||
train_sampler = MetaBatchSampler(train_data.labels, args.n_way, args.k_shot * 2, len(train_data) // (args.n_way*args.k_shot))
|
||||
test_sampler = MetaBatchSampler( test_data.labels, args.n_way, args.k_shot * 2, len( test_data) // (args.n_way*args.k_shot))
|
||||
|
||||
train_loader = torch.utils.data.DataLoader(train_data, batch_sampler=train_sampler)
|
||||
test_loader = torch.utils.data.DataLoader( test_data, batch_sampler= test_sampler)
|
||||
|
||||
# network
|
||||
basemodel = Networks[args.arch](args.init_channels, args.layers, head='imagenet')
|
||||
model = torch.nn.DataParallel(basemodel).cuda()
|
||||
print_log("Parameter size = {:.3f} MB".format(count_parameters_in_MB(basemodel.base_parameters())), log)
|
||||
print_log("Train-transformation : {:}\nTest--transformation : {:}".format(train_transform, test_transform), log)
|
||||
|
||||
# optimizer and LR-scheduler
|
||||
#base_optimizer = torch.optim.SGD (basemodel.base_parameters(), args.learning_rate_max, momentum=args.momentum, weight_decay=args.weight_decay)
|
||||
base_optimizer = torch.optim.Adam(basemodel.base_parameters(), lr=args.learning_rate_max, betas=(0.5, 0.999), weight_decay=args.weight_decay)
|
||||
base_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(base_optimizer, float(args.epochs), eta_min=args.learning_rate_min)
|
||||
arch_optimizer = torch.optim.Adam(basemodel.arch_parameters(), lr=args.arch_learning_rate, betas=(0.5, 0.999), weight_decay=args.arch_weight_decay)
|
||||
|
||||
# snapshot
|
||||
checkpoint_path = os.path.join(args.save_path, 'checkpoint-meta-search.pth')
|
||||
if args.resume is not None and os.path.isfile(args.resume):
|
||||
checkpoint = torch.load(args.resume)
|
||||
start_epoch = checkpoint['epoch']
|
||||
basemodel.load_state_dict( checkpoint['state_dict'] )
|
||||
base_optimizer.load_state_dict( checkpoint['base_optimizer'] )
|
||||
arch_optimizer.load_state_dict( checkpoint['arch_optimizer'] )
|
||||
base_scheduler.load_state_dict( checkpoint['base_scheduler'] )
|
||||
genotypes = checkpoint['genotypes']
|
||||
print_log('Load resume from {:} with start-epoch = {:}'.format(args.resume, start_epoch), log)
|
||||
elif os.path.isfile(checkpoint_path):
|
||||
checkpoint = torch.load(checkpoint_path)
|
||||
start_epoch = checkpoint['epoch']
|
||||
basemodel.load_state_dict( checkpoint['state_dict'] )
|
||||
base_optimizer.load_state_dict( checkpoint['base_optimizer'] )
|
||||
arch_optimizer.load_state_dict( checkpoint['arch_optimizer'] )
|
||||
base_scheduler.load_state_dict( checkpoint['base_scheduler'] )
|
||||
genotypes = checkpoint['genotypes']
|
||||
print_log('Load checkpoint from {:} with start-epoch = {:}'.format(checkpoint_path, start_epoch), log)
|
||||
else:
|
||||
start_epoch, genotypes = 0, {}
|
||||
print_log('Train model-search from scratch.', log)
|
||||
|
||||
config = load_config(args.model_config)
|
||||
|
||||
if args.only_base:
|
||||
print_log('---- Only Train the Searched Model ----', log)
|
||||
CIFAR_DATA_DIR = os.environ['TORCH_HOME'] + '/cifar.python'
|
||||
main_procedure(config, 'cifar10', CIFAR_DATA_DIR, args, basemodel.genotype(), 36, 20, log)
|
||||
return
|
||||
|
||||
# Main loop
|
||||
start_time, epoch_time, total_train_time = time.time(), AverageMeter(), 0
|
||||
for epoch in range(start_epoch, args.epochs):
|
||||
base_scheduler.step()
|
||||
|
||||
need_time = convert_secs2time(epoch_time.val * (args.epochs-epoch), True)
|
||||
print_log('\n==>>{:s} [Epoch={:03d}/{:03d}] {:s} [LR={:6.4f} ~ {:6.4f}]'.format(time_string(), epoch, args.epochs, need_time, min(base_scheduler.get_lr()), max(base_scheduler.get_lr())), log)
|
||||
|
||||
genotype = basemodel.genotype()
|
||||
print_log('genotype = {:}'.format(genotype), log)
|
||||
print_log('{:03d}/{:03d} alphas :\n{:}'.format(epoch, args.epochs, return_alphas_str(basemodel)), log)
|
||||
|
||||
# training
|
||||
train_acc1, train_obj, train_time \
|
||||
= train(train_loader, test_loader, model, args.n_way, base_optimizer, arch_optimizer, epoch, log)
|
||||
total_train_time += train_time
|
||||
# validation
|
||||
valid_acc1, valid_obj = infer(test_loader, model, epoch, args.n_way, log)
|
||||
|
||||
print_log('META -> {:}-way {:}-shot : {:03d}/{:03d} : Train Acc : {:.2f}, Test Acc : {:.2f}'.format(args.n_way, args.k_shot, epoch, args.epochs, train_acc1, valid_acc1), log)
|
||||
# save genotype
|
||||
genotypes[epoch] = basemodel.genotype()
|
||||
|
||||
# save checkpoint
|
||||
torch.save({'epoch' : epoch + 1,
|
||||
'args' : deepcopy(args),
|
||||
'state_dict': basemodel.state_dict(),
|
||||
'genotypes' : genotypes,
|
||||
'base_optimizer' : base_optimizer.state_dict(),
|
||||
'arch_optimizer' : arch_optimizer.state_dict(),
|
||||
'base_scheduler' : base_scheduler.state_dict()},
|
||||
checkpoint_path)
|
||||
print_log('----> Save into {:}'.format(checkpoint_path), log)
|
||||
|
||||
|
||||
# measure elapsed time
|
||||
epoch_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
|
||||
print_log('Finish with training time = {:}'.format( convert_secs2time(total_train_time, True) ), log)
|
||||
|
||||
# clear GPU cache
|
||||
CIFAR_DATA_DIR = os.environ['TORCH_HOME'] + '/cifar.python'
|
||||
print_log('test for CIFAR-10', log)
|
||||
torch.cuda.empty_cache()
|
||||
main_procedure(config, 'cifar10' , CIFAR_DATA_DIR, args, basemodel.genotype(), 36, 20, log)
|
||||
print_log('test for CIFAR-100', log)
|
||||
torch.cuda.empty_cache()
|
||||
main_procedure(config, 'cifar100', CIFAR_DATA_DIR, args, basemodel.genotype(), 36, 20, log)
|
||||
log.close()
|
||||
|
||||
|
||||
|
||||
def euclidean_dist(A, B):
|
||||
na, da = A.size()
|
||||
nb, db = B.size()
|
||||
assert da == db, 'invalid feature dim : {:} vs. {:}'.format(da, db)
|
||||
X, Y = A.view(na, 1, da), B.view(1, nb, db)
|
||||
return torch.pow(X-Y, 2).sum(2)
|
||||
|
||||
|
||||
|
||||
def get_loss(features, targets, n_way):
|
||||
classes = torch.unique(targets)
|
||||
shot = features.size(0) // n_way // 2
|
||||
|
||||
support_index, query_index, labels = [], [], []
|
||||
for idx, cls in enumerate( classes.tolist() ):
|
||||
indexs = (targets == cls).nonzero().view(-1).tolist()
|
||||
support_index.append(indexs[:shot])
|
||||
query_index += indexs[shot:]
|
||||
labels += [idx] * shot
|
||||
query_features = features[query_index, :]
|
||||
support_features = features[support_index, :]
|
||||
support_features = torch.mean(support_features, dim=1)
|
||||
|
||||
labels = torch.LongTensor(labels).cuda(non_blocking=True)
|
||||
logits = -euclidean_dist(query_features, support_features)
|
||||
loss = F.cross_entropy(logits, labels)
|
||||
accuracy = obtain_accuracy(logits.data, labels.data, topk=(1,))[0]
|
||||
return loss, accuracy
|
||||
|
||||
|
||||
|
||||
def train(train_queue, valid_queue, model, n_way, base_optimizer, arch_optimizer, epoch, log):
|
||||
data_time, batch_time = AverageMeter(), AverageMeter()
|
||||
objs, accuracies = AverageMeter(), AverageMeter()
|
||||
model.train()
|
||||
|
||||
valid_iter = iter(valid_queue)
|
||||
end = time.time()
|
||||
for step, (inputs, targets) in enumerate(train_queue):
|
||||
batch, C, H, W = inputs.size()
|
||||
|
||||
#inputs, targets = inputs.cuda(), targets.cuda(non_blocking=True)
|
||||
#targets = targets.cuda(non_blocking=True)
|
||||
data_time.update(time.time() - end)
|
||||
|
||||
# get a random minibatch from the search queue with replacement
|
||||
try:
|
||||
input_search, target_search = next(valid_iter)
|
||||
except:
|
||||
valid_iter = iter(valid_queue)
|
||||
input_search, target_search = next(valid_iter)
|
||||
|
||||
#target_search = target_search.cuda(non_blocking=True)
|
||||
|
||||
# update the architecture
|
||||
arch_optimizer.zero_grad()
|
||||
feature_search = model(input_search)
|
||||
arch_loss, arch_accuracy = get_loss(feature_search, target_search, n_way)
|
||||
arch_loss.backward()
|
||||
arch_optimizer.step()
|
||||
|
||||
# update the parameters
|
||||
base_optimizer.zero_grad()
|
||||
feature_model = model(inputs)
|
||||
model_loss, model_accuracy = get_loss(feature_model, targets, n_way)
|
||||
|
||||
model_loss.backward()
|
||||
torch.nn.utils.clip_grad_norm_(model.module.base_parameters(), args.grad_clip)
|
||||
base_optimizer.step()
|
||||
|
||||
objs.update(model_loss.item() , batch)
|
||||
accuracies.update(model_accuracy.item(), batch)
|
||||
|
||||
# measure elapsed time
|
||||
batch_time.update(time.time() - end)
|
||||
end = time.time()
|
||||
|
||||
if step % args.print_freq == 0 or (step+1) == len(train_queue):
|
||||
Sstr = ' TRAIN-SEARCH ' + time_string() + ' Epoch: [{:03d}][{:03d}/{:03d}]'.format(epoch, step, len(train_queue))
|
||||
Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time)
|
||||
Lstr = 'Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f})'.format(loss=objs, top1=accuracies)
|
||||
Istr = 'I : {:}'.format( list(inputs.size()) )
|
||||
print_log(Sstr + ' ' + Tstr + ' ' + Lstr + ' ' + Istr, log)
|
||||
|
||||
return accuracies.avg, objs.avg, batch_time.sum
|
||||
|
||||
|
||||
|
||||
def infer(valid_queue, model, epoch, n_way, log):
|
||||
objs, accuracies = AverageMeter(), AverageMeter()
|
||||
|
||||
model.eval()
|
||||
with torch.no_grad():
|
||||
for step, (inputs, targets) in enumerate(valid_queue):
|
||||
batch, C, H, W = inputs.size()
|
||||
#targets = targets.cuda(non_blocking=True)
|
||||
|
||||
features = model(inputs)
|
||||
loss, accuracy = get_loss(features, targets, n_way)
|
||||
|
||||
objs.update(loss.item() , batch)
|
||||
accuracies.update(accuracy.item(), batch)
|
||||
|
||||
if step % (args.print_freq*4) == 0 or (step+1) == len(valid_queue):
|
||||
Sstr = ' VALID-SEARCH ' + time_string() + ' Epoch: [{:03d}][{:03d}/{:03d}]'.format(epoch, step, len(valid_queue))
|
||||
Lstr = 'Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f})'.format(loss=objs, top1=accuracies)
|
||||
print_log(Sstr + ' ' + Lstr, log)
|
||||
|
||||
return accuracies.avg, objs.avg
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Reference in New Issue
Block a user