Update super-activation layers

This commit is contained in:
D-X-Y
2021-05-12 13:54:06 +08:00
parent 0dbbc286c9
commit 4da19d6efe
7 changed files with 349 additions and 127 deletions

View File

@@ -37,4 +37,4 @@ def get_model(config: Dict[Text, Any], **kwargs):
)
else:
raise TypeError("Unkonwn model type: {:}".format(model_type))
return model
return model

View File

@@ -38,6 +38,46 @@ class SuperReLU(SuperModule):
return "inplace=True" if self._inplace else ""
class SuperGELU(SuperModule):
"""Applies a the Gaussian Error Linear Units function element-wise."""
def __init__(self) -> None:
super(SuperGELU, self).__init__()
@property
def abstract_search_space(self):
return spaces.VirtualNode(id(self))
def forward_candidate(self, input: torch.Tensor) -> torch.Tensor:
return self.forward_raw(input)
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
return F.gelu(input)
def forward_with_container(self, input, container, prefix=[]):
return self.forward_raw(input)
class SuperSigmoid(SuperModule):
"""Applies a the Sigmoid function element-wise."""
def __init__(self) -> None:
super(SuperSigmoid, self).__init__()
@property
def abstract_search_space(self):
return spaces.VirtualNode(id(self))
def forward_candidate(self, input: torch.Tensor) -> torch.Tensor:
return self.forward_raw(input)
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
return torch.sigmoid(input)
def forward_with_container(self, input, container, prefix=[]):
return self.forward_raw(input)
class SuperLeakyReLU(SuperModule):
"""https://pytorch.org/docs/stable/_modules/torch/nn/modules/activation.html#LeakyReLU"""

View File

@@ -28,9 +28,13 @@ from .super_transformer import SuperTransformerEncoderLayer
from .super_activations import SuperReLU
from .super_activations import SuperLeakyReLU
from .super_activations import SuperTanh
from .super_activations import SuperGELU
from .super_activations import SuperSigmoid
super_name2activation = {
"relu": SuperReLU,
"sigmoid": SuperSigmoid,
"gelu": SuperGELU,
"leaky_relu": SuperLeakyReLU,
"tanh": SuperTanh,
}

View File

@@ -11,128 +11,10 @@ from enum import Enum
import spaces
IntSpaceType = Union[int, spaces.Integer, spaces.Categorical]
BoolSpaceType = Union[bool, spaces.Categorical]
class LayerOrder(Enum):
"""This class defines the enumerations for order of operation in a residual or normalization-based layer."""
PreNorm = "pre-norm"
PostNorm = "post-norm"
class SuperRunMode(Enum):
"""This class defines the enumerations for Super Model Running Mode."""
FullModel = "fullmodel"
Candidate = "candidate"
Default = "fullmodel"
class TensorContainer:
"""A class to maintain both parameters and buffers for a model."""
def __init__(self):
self._names = []
self._tensors = []
self._param_or_buffers = []
self._name2index = dict()
def additive(self, tensors):
result = TensorContainer()
for index, name in enumerate(self._names):
new_tensor = self._tensors[index] + tensors[index]
result.append(name, new_tensor, self._param_or_buffers[index])
return result
def create_container(self, tensors):
result = TensorContainer()
for index, name in enumerate(self._names):
new_tensor = tensors[index]
result.append(name, new_tensor, self._param_or_buffers[index])
return result
def no_grad_clone(self):
result = TensorContainer()
with torch.no_grad():
for index, name in enumerate(self._names):
result.append(
name, self._tensors[index].clone(), self._param_or_buffers[index]
)
return result
def requires_grad_(self, requires_grad=True):
for tensor in self._tensors:
tensor.requires_grad_(requires_grad)
def parameters(self):
return self._tensors
@property
def tensors(self):
return self._tensors
def flatten(self, tensors=None):
if tensors is None:
tensors = self._tensors
tensors = [tensor.view(-1) for tensor in tensors]
return torch.cat(tensors)
def unflatten(self, tensor):
tensors, s = [], 0
for raw_tensor in self._tensors:
length = raw_tensor.numel()
x = torch.reshape(tensor[s : s + length], shape=raw_tensor.shape)
tensors.append(x)
s += length
return tensors
def append(self, name, tensor, param_or_buffer):
if not isinstance(tensor, torch.Tensor):
raise TypeError(
"The input tensor must be torch.Tensor instead of {:}".format(
type(tensor)
)
)
self._names.append(name)
self._tensors.append(tensor)
self._param_or_buffers.append(param_or_buffer)
assert name not in self._name2index, "The [{:}] has already been added.".format(
name
)
self._name2index[name] = len(self._names) - 1
def query(self, name):
if not self.has(name):
raise ValueError(
"The {:} is not in {:}".format(name, list(self._name2index.keys()))
)
index = self._name2index[name]
return self._tensors[index]
def has(self, name):
return name in self._name2index
def has_prefix(self, prefix):
for name, idx in self._name2index.items():
if name.startswith(prefix):
return name
return False
def numel(self):
total = 0
for tensor in self._tensors:
total += tensor.numel()
return total
def __len__(self):
return len(self._names)
def __repr__(self):
return "{name}({num} tensors)".format(
name=self.__class__.__name__, num=len(self)
)
from .super_utils import IntSpaceType, BoolSpaceType
from .super_utils import LayerOrder, SuperRunMode
from .super_utils import TensorContainer
from .super_utils import ShapeContainer
class SuperModule(abc.ABC, nn.Module):

222
lib/xlayers/super_utils.py Normal file
View File

@@ -0,0 +1,222 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
#####################################################
import abc
import warnings
from typing import Optional, Union, Callable
import torch
import torch.nn as nn
from enum import Enum
import spaces
IntSpaceType = Union[int, spaces.Integer, spaces.Categorical]
BoolSpaceType = Union[bool, spaces.Categorical]
class LayerOrder(Enum):
"""This class defines the enumerations for order of operation in a residual or normalization-based layer."""
PreNorm = "pre-norm"
PostNorm = "post-norm"
class SuperRunMode(Enum):
"""This class defines the enumerations for Super Model Running Mode."""
FullModel = "fullmodel"
Candidate = "candidate"
Default = "fullmodel"
class ShapeContainer:
"""A class to maintain the shape of each weight tensor for a model."""
def __init__(self):
self._names = []
self._shapes = []
self._name2index = dict()
self._param_or_buffers = []
@property
def shapes(self):
return self._shapes
def __getitem__(self, index):
return self._shapes[index]
def translate(self, tensors, all_none_match=True):
result = TensorContainer()
for index, name in enumerate(self._names):
cur_num = tensors[index].numel()
expected_num = self._shapes[index].numel()
if cur_num < expected_num or (
cur_num > expected_num and not all_none_match
):
raise ValueError("Invalid {:} vs {:}".format(cur_num, expected_num))
cur_tensor = tensors[index].view(-1)[:expected_num]
new_tensor = torch.reshape(cur_tensor, self._shapes[index])
result.append(name, new_tensor, self._param_or_buffers[index])
return result
def append(self, name, shape, param_or_buffer):
if not isinstance(shape, torch.Size):
raise TypeError(
"The input tensor must be torch.Size instead of {:}".format(type(shape))
)
self._names.append(name)
self._shapes.append(shape)
self._param_or_buffers.append(param_or_buffer)
assert name not in self._name2index, "The [{:}] has already been added.".format(
name
)
self._name2index[name] = len(self._names) - 1
def query(self, name):
if not self.has(name):
raise ValueError(
"The {:} is not in {:}".format(name, list(self._name2index.keys()))
)
index = self._name2index[name]
return self._shapes[index]
def has(self, name):
return name in self._name2index
def has_prefix(self, prefix):
for name, idx in self._name2index.items():
if name.startswith(prefix):
return name
return False
def numel(self, index=None):
if index is None:
shapes = self._shapes
else:
shapes = [self._shapes[index]]
total = 0
for shape in shapes:
total += shape.numel()
return total
def __len__(self):
return len(self._names)
def __repr__(self):
return "{name}({num} tensors)".format(
name=self.__class__.__name__, num=len(self)
)
class TensorContainer:
"""A class to maintain both parameters and buffers for a model."""
def __init__(self):
self._names = []
self._tensors = []
self._param_or_buffers = []
self._name2index = dict()
def additive(self, tensors):
result = TensorContainer()
for index, name in enumerate(self._names):
new_tensor = self._tensors[index] + tensors[index]
result.append(name, new_tensor, self._param_or_buffers[index])
return result
def create_container(self, tensors):
result = TensorContainer()
for index, name in enumerate(self._names):
new_tensor = tensors[index]
result.append(name, new_tensor, self._param_or_buffers[index])
return result
def no_grad_clone(self):
result = TensorContainer()
with torch.no_grad():
for index, name in enumerate(self._names):
result.append(
name, self._tensors[index].clone(), self._param_or_buffers[index]
)
return result
def to_shape_container(self):
result = ShapeContainer()
for index, name in enumerate(self._names):
result.append(
name, self._tensors[index].shape, self._param_or_buffers[index]
)
return result
def requires_grad_(self, requires_grad=True):
for tensor in self._tensors:
tensor.requires_grad_(requires_grad)
def parameters(self):
return self._tensors
@property
def tensors(self):
return self._tensors
def flatten(self, tensors=None):
if tensors is None:
tensors = self._tensors
tensors = [tensor.view(-1) for tensor in tensors]
return torch.cat(tensors)
def unflatten(self, tensor):
tensors, s = [], 0
for raw_tensor in self._tensors:
length = raw_tensor.numel()
x = torch.reshape(tensor[s : s + length], shape=raw_tensor.shape)
tensors.append(x)
s += length
return tensors
def append(self, name, tensor, param_or_buffer):
if not isinstance(tensor, torch.Tensor):
raise TypeError(
"The input tensor must be torch.Tensor instead of {:}".format(
type(tensor)
)
)
self._names.append(name)
self._tensors.append(tensor)
self._param_or_buffers.append(param_or_buffer)
assert name not in self._name2index, "The [{:}] has already been added.".format(
name
)
self._name2index[name] = len(self._names) - 1
def query(self, name):
if not self.has(name):
raise ValueError(
"The {:} is not in {:}".format(name, list(self._name2index.keys()))
)
index = self._name2index[name]
return self._tensors[index]
def has(self, name):
return name in self._name2index
def has_prefix(self, prefix):
for name, idx in self._name2index.items():
if name.startswith(prefix):
return name
return False
def numel(self):
total = 0
for tensor in self._tensors:
total += tensor.numel()
return total
def __len__(self):
return len(self._names)
def __repr__(self):
return "{name}({num} tensors)".format(
name=self.__class__.__name__, num=len(self)
)