Add super/norm layers in xcore

This commit is contained in:
D-X-Y
2021-05-06 16:38:58 +08:00
parent ff5e544240
commit 4c14c7b85b
6 changed files with 392 additions and 13 deletions

View File

@@ -89,8 +89,8 @@ class SuperSimpleNorm(SuperModule):
def __init__(self, mean, std, inplace=False) -> None:
super(SuperSimpleNorm, self).__init__()
self._mean = mean
self._std = std
self.register_buffer("_mean", torch.tensor(mean, dtype=torch.float))
self.register_buffer("_std", torch.tensor(std, dtype=torch.float))
self._inplace = inplace
@property
@@ -111,7 +111,7 @@ class SuperSimpleNorm(SuperModule):
if (std == 0).any():
raise ValueError(
"std evaluated to zero after conversion to {}, leading to division by zero.".format(
dtype
tensor.dtype
)
)
while mean.ndim < tensor.ndim:
@@ -119,6 +119,75 @@ class SuperSimpleNorm(SuperModule):
return tensor.sub_(mean).div_(std)
def extra_repr(self) -> str:
return "mean={mean}, std={mean}, inplace={inplace}".format(
mean=self._mean, std=self._std, inplace=self._inplace
return "mean={mean}, std={std}, inplace={inplace}".format(
mean=self._mean.item(), std=self._std.item(), inplace=self._inplace
)
class SuperSimpleLearnableNorm(SuperModule):
"""Super simple normalization."""
def __init__(self, mean=0, std=1, eps=1e-6, inplace=False) -> None:
super(SuperSimpleLearnableNorm, self).__init__()
self.register_parameter(
"_mean", nn.Parameter(torch.tensor(mean, dtype=torch.float))
)
self.register_parameter(
"_std", nn.Parameter(torch.tensor(std, dtype=torch.float))
)
self._eps = eps
self._inplace = inplace
@property
def abstract_search_space(self):
return spaces.VirtualNode(id(self))
def forward_candidate(self, input: torch.Tensor) -> torch.Tensor:
# check inputs ->
return self.forward_raw(input)
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
if not self._inplace:
tensor = input.clone()
else:
tensor = input
mean, std = (
self._mean.to(tensor.device),
torch.abs(self._std.to(tensor.device)) + self._eps,
)
if (std == 0).any():
raise ValueError("std leads to division by zero.")
while mean.ndim < tensor.ndim:
mean, std = torch.unsqueeze(mean, dim=0), torch.unsqueeze(std, dim=0)
return tensor.sub_(mean).div_(std)
def extra_repr(self) -> str:
return "mean={mean}, std={std}, inplace={inplace}".format(
mean=self._mean.item(), std=self._std.item(), inplace=self._inplace
)
class SuperIdentity(SuperModule):
"""Super identity mapping layer."""
def __init__(self, inplace=False, **kwargs) -> None:
super(SuperIdentity, self).__init__()
self._inplace = inplace
@property
def abstract_search_space(self):
return spaces.VirtualNode(id(self))
def forward_candidate(self, input: torch.Tensor) -> torch.Tensor:
# check inputs ->
return self.forward_raw(input)
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
if not self._inplace:
tensor = input.clone()
else:
tensor = input
return tensor
def extra_repr(self) -> str:
return "inplace={inplace}".format(inplace=self._inplace)