update README

This commit is contained in:
D-X-Y
2019-12-28 15:42:36 +11:00
parent d791622b63
commit 4c144b7437
6 changed files with 59 additions and 28 deletions

View File

@@ -2,6 +2,7 @@
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
# required to install hpbandster #################
# bash ./scripts-search/algos/BOHB.sh -1 #
##################################################
import os, sys, time, glob, random, argparse
import numpy as np, collections
@@ -19,7 +20,6 @@ from utils import get_model_infos, obtain_accuracy
from log_utils import AverageMeter, time_string, convert_secs2time
from nas_102_api import NASBench102API as API
from models import CellStructure, get_search_spaces
from R_EA import train_and_eval
# BOHB: Robust and Efficient Hyperparameter Optimization at Scale, ICML 2018
import ConfigSpace
from hpbandster.optimizers.bohb import BOHB
@@ -53,21 +53,44 @@ def config2structure_func(max_nodes):
class MyWorker(Worker):
def __init__(self, *args, sleep_interval=0, convert_func=None, nas_bench=None, **kwargs):
def __init__(self, *args, convert_func=None, nas_bench=None, time_scale=None, **kwargs):
super().__init__(*args, **kwargs)
self.sleep_interval = sleep_interval
self.convert_func = convert_func
self.nas_bench = nas_bench
self.test_time = 0
self.time_scale = time_scale
self.seen_arch = 0
self.sim_cost_time = 0
self.real_cost_time = 0
def compute(self, config, budget, **kwargs):
structure = self.convert_func( config )
reward, time_cost = train_and_eval(structure, self.nas_bench, None)
import pdb; pdb.set_trace()
self.test_time += 1
start_time = time.time()
structure = self.convert_func( config )
arch_index = self.nas_bench.query_index_by_arch( structure )
iepoch = 0
while iepoch < 12:
info = self.nas_bench.get_more_info(arch_index, 'cifar10-valid', iepoch, True)
cur_time = info['train-all-time'] + info['valid-per-time']
cur_vacc = info['valid-accuracy']
if time.time() - start_time + cur_time / self.time_scale > budget:
break
else:
iepoch += 1
self.sim_cost_time += cur_time
self.seen_arch += 1
remaining_time = cur_time / self.time_scale - (time.time() - start_time)
if remaining_time > 0:
time.sleep(remaining_time)
else:
import pdb; pdb.set_trace()
self.real_cost_time += (time.time() - start_time)
return ({
'loss': float(100-reward),
'info': time_cost})
'loss': 100 - float(cur_vacc),
'info': {'seen-arch' : self.seen_arch,
'sim-test-time' : self.sim_cost_time,
'real-test-time': self.real_cost_time,
'current-arch' : arch_index,
'current-budget': budget}
})
def main(xargs, nas_bench):
@@ -116,26 +139,30 @@ def main(xargs, nas_bench):
#logger.log('{:} Create NAS-BENCH-API DONE'.format(time_string()))
workers = []
for i in range(num_workers):
w = MyWorker(nameserver=ns_host, nameserver_port=ns_port, convert_func=config2structure, nas_bench=nas_bench, run_id=hb_run_id, id=i)
w = MyWorker(nameserver=ns_host, nameserver_port=ns_port, convert_func=config2structure, nas_bench=nas_bench, time_scale=xargs.time_scale, run_id=hb_run_id, id=i)
w.run(background=True)
workers.append(w)
simulate_time_budge = xargs.time_budget // xargs.time_scale
start_time = time.time()
logger.log('simulate_time_budge : {:} (in seconds).'.format(simulate_time_budge))
bohb = BOHB(configspace=cs,
run_id=hb_run_id,
eta=3, min_budget=3, max_budget=xargs.time_budget,
eta=3, min_budget=simulate_time_budge//3, max_budget=simulate_time_budge,
nameserver=ns_host,
nameserver_port=ns_port,
num_samples=xargs.num_samples,
random_fraction=xargs.random_fraction, bandwidth_factor=xargs.bandwidth_factor,
ping_interval=10, min_bandwidth=xargs.min_bandwidth)
# optimization_strategy=xargs.strategy, num_samples=xargs.num_samples,
results = bohb.run(xargs.n_iters, min_n_workers=num_workers)
import pdb; pdb.set_trace()
bohb.shutdown(shutdown_workers=True)
NS.shutdown()
real_cost_time = time.time() - start_time
import pdb; pdb.set_trace()
id2config = results.get_id2config_mapping()
incumbent = results.get_incumbent_id()
@@ -163,6 +190,7 @@ if __name__ == '__main__':
parser.add_argument('--channel', type=int, help='The number of channels.')
parser.add_argument('--num_cells', type=int, help='The number of cells in one stage.')
parser.add_argument('--time_budget', type=int, help='The total time cost budge for searching (in seconds).')
parser.add_argument('--time_scale' , type=int, help='The time scale to accelerate the time budget.')
# BOHB
parser.add_argument('--strategy', default="sampling", type=str, nargs='?', help='optimization strategy for the acquisition function')
parser.add_argument('--min_bandwidth', default=.3, type=float, nargs='?', help='minimum bandwidth for KDE')

View File

@@ -59,7 +59,7 @@ def train_and_eval(arch, nas_bench, extra_info):
if nas_bench is not None:
arch_index = nas_bench.query_index_by_arch( arch )
assert arch_index >= 0, 'can not find this arch : {:}'.format(arch)
info = nas_bench.get_more_info(arch_index, 'cifar10-valid', True)
info = nas_bench.get_more_info(arch_index, 'cifar10-valid', None, True)
valid_acc, time_cost = info['valid-accuracy'], info['train-all-time'] + info['valid-per-time']
#_, valid_acc = info.get_metrics('cifar10-valid', 'x-valid' , 25, True) # use the validation accuracy after 25 training epochs
else: