update scripts-cluster

This commit is contained in:
Xuanyi Dong
2019-03-31 22:49:43 +08:00
parent 280c9f3099
commit 4bac459bf9
20 changed files with 118 additions and 1248 deletions

View File

@@ -7,6 +7,7 @@ import torchvision.transforms as transforms
from utils import Cutout
from .TieredImageNet import TieredImageNet
Dataset2Class = {'cifar10' : 10,
'cifar100': 100,
'tiered' : -1,
@@ -59,11 +60,11 @@ def get_datasets(name, root, cutout):
else: raise TypeError("Unknow dataset : {:}".format(name))
if name == 'cifar10':
train_data = dset.CIFAR10(root, train=True, transform=train_transform, download=True)
test_data = dset.CIFAR10(root, train=True, transform=test_transform , download=True)
train_data = dset.CIFAR10(root, train=True , transform=train_transform, download=True)
test_data = dset.CIFAR10(root, train=False, transform=test_transform , download=True)
elif name == 'cifar100':
train_data = dset.CIFAR100(root, train=True, transform=train_transform, download=True)
test_data = dset.CIFAR100(root, train=True, transform=test_transform , download=True)
train_data = dset.CIFAR100(root, train=True , transform=train_transform, download=True)
test_data = dset.CIFAR100(root, train=False, transform=test_transform , download=True)
elif name == 'imagenet-1k' or name == 'imagenet-100':
train_data = dset.ImageFolder(osp.join(root, 'train'), train_transform)
test_data = dset.ImageFolder(osp.join(root, 'val'), train_transform)

View File

@@ -1,12 +1,5 @@
from .model_search import Network
from .model_search_v1 import NetworkV1
from .model_search_f1 import NetworkF1
# acceleration model
from .model_search_f1_acc2 import NetworkFACC1
from .model_search_acc2 import NetworkACC2
from .model_search_v3 import NetworkV3
from .model_search_v4 import NetworkV4
from .model_search_v5 import NetworkV5
from .CifarNet import NetworkCIFAR
from .ImageNet import NetworkImageNet

View File

@@ -128,7 +128,7 @@ class Transition(nn.Module):
self.ops2 = nn.ModuleList(
[nn.Sequential(
nn.MaxPool2d(3, stride=1, padding=1),
nn.MaxPool2d(3, stride=2, padding=1),
nn.BatchNorm2d(C, affine=True)),
nn.Sequential(
nn.MaxPool2d(3, stride=2, padding=1),
@@ -144,7 +144,8 @@ class Transition(nn.Module):
if self.training and drop_prob > 0.:
X0, X1 = drop_path(X0, drop_prob), drop_path(X1, drop_prob)
X2 = self.ops2[0] (X0+X1)
#X2 = self.ops2[0] (X0+X1)
X2 = self.ops2[0] (s0)
X3 = self.ops2[1] (s1)
if self.training and drop_prob > 0.:
X2, X3 = drop_path(X2, drop_prob), drop_path(X3, drop_prob)

View File

@@ -1,180 +0,0 @@
# gumbel softmax
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
from .operations import OPS, FactorizedReduce, ReLUConvBN
from .genotypes import PRIMITIVES, Genotype
class MixedOp(nn.Module):
def __init__(self, C, stride):
super(MixedOp, self).__init__()
self._ops = nn.ModuleList()
for primitive in PRIMITIVES:
op = OPS[primitive](C, stride, False)
self._ops.append(op)
def forward(self, x, weights, cpu_weights):
use_sum = sum([abs(_) > 1e-10 for _ in cpu_weights])
if use_sum > 3:
return sum(w * op(x) for w, op in zip(weights, self._ops))
else:
clist = []
for j, cpu_weight in enumerate(cpu_weights):
if abs(cpu_weight) > 1e-10:
clist.append( weights[j] * self._ops[j](x) )
assert len(clist) > 0, 'invalid length : {:}'.format(cpu_weights)
return sum(clist)
class Cell(nn.Module):
def __init__(self, steps, multiplier, C_prev_prev, C_prev, C, reduction, reduction_prev):
super(Cell, self).__init__()
self.reduction = reduction
if reduction_prev:
self.preprocess0 = FactorizedReduce(C_prev_prev, C, affine=False)
else:
self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, affine=False)
self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, affine=False)
self._steps = steps
self._multiplier = multiplier
self._ops = nn.ModuleList()
for i in range(self._steps):
for j in range(2+i):
stride = 2 if reduction and j < 2 else 1
op = MixedOp(C, stride)
self._ops.append(op)
def forward(self, s0, s1, weights):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
cpu_weights = weights.tolist()
states = [s0, s1]
offset = 0
for i in range(self._steps):
clist = []
for j, h in enumerate(states):
x = self._ops[offset+j](h, weights[offset+j], cpu_weights[offset+j])
clist.append( x )
s = sum(clist)
offset += len(states)
states.append(s)
return torch.cat(states[-self._multiplier:], dim=1)
class NetworkACC2(nn.Module):
def __init__(self, C, num_classes, layers, steps=4, multiplier=4, stem_multiplier=3):
super(NetworkACC2, self).__init__()
self._C = C
self._num_classes = num_classes
self._layers = layers
self._steps = steps
self._multiplier = multiplier
C_curr = stem_multiplier*C
self.stem = nn.Sequential(
nn.Conv2d(3, C_curr, 3, padding=1, bias=False),
nn.BatchNorm2d(C_curr)
)
C_prev_prev, C_prev, C_curr = C_curr, C_curr, C
reduction_prev, cells = False, []
for i in range(layers):
if i in [layers//3, 2*layers//3]:
C_curr *= 2
reduction = True
else:
reduction = False
cell = Cell(steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev)
reduction_prev = reduction
cells.append( cell )
C_prev_prev, C_prev = C_prev, multiplier*C_curr
self.cells = nn.ModuleList(cells)
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.tau = 5
self.use_gumbel = True
# initialize architecture parameters
k = sum(1 for i in range(self._steps) for n in range(2+i))
num_ops = len(PRIMITIVES)
self.alphas_normal = Parameter(torch.Tensor(k, num_ops))
self.alphas_reduce = Parameter(torch.Tensor(k, num_ops))
nn.init.normal_(self.alphas_normal, 0, 0.001)
nn.init.normal_(self.alphas_reduce, 0, 0.001)
def set_gumbel(self, use_gumbel):
self.use_gumbel = use_gumbel
def set_tau(self, tau):
self.tau = tau
def get_tau(self):
return self.tau
def arch_parameters(self):
return [self.alphas_normal, self.alphas_reduce]
def base_parameters(self):
lists = list(self.stem.parameters()) + list(self.cells.parameters())
lists += list(self.global_pooling.parameters())
lists += list(self.classifier.parameters())
return lists
def forward(self, inputs):
batch, C, H, W = inputs.size()
s0 = s1 = self.stem(inputs)
for i, cell in enumerate(self.cells):
if cell.reduction:
if self.use_gumbel : weights = F.gumbel_softmax(self.alphas_reduce, self.tau, True)
else : weights = F.softmax(self.alphas_reduce, dim=-1)
else:
if self.use_gumbel : weights = F.gumbel_softmax(self.alphas_normal, self.tau, True)
else : weights = F.softmax(self.alphas_normal, dim=-1)
s0, s1 = s1, cell(s0, s1, weights)
out = self.global_pooling(s1)
out = out.view(batch, -1)
logits = self.classifier(out)
return logits
def genotype(self):
def _parse(weights):
gene, n, start = [], 2, 0
for i in range(self._steps):
end = start + n
W = weights[start:end].copy()
edges = sorted(range(i + 2), key=lambda x: -max(W[x][k] for k in range(len(W[x])) if k != PRIMITIVES.index('none')))[:2]
for j in edges:
k_best = None
for k in range(len(W[j])):
if k != PRIMITIVES.index('none'):
if k_best is None or W[j][k] > W[j][k_best]:
k_best = k
gene.append((PRIMITIVES[k_best], j, float(W[j][k_best])))
start = end
n += 1
return gene
with torch.no_grad():
gene_normal = _parse(F.softmax(self.alphas_normal, dim=-1).cpu().numpy())
gene_reduce = _parse(F.softmax(self.alphas_reduce, dim=-1).cpu().numpy())
concat = range(2+self._steps-self._multiplier, self._steps+2)
genotype = Genotype(
normal=gene_normal, normal_concat=concat,
reduce=gene_reduce, reduce_concat=concat
)
return genotype

View File

@@ -1,167 +0,0 @@
# share parameters
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
from .operations import OPS, FactorizedReduce, ReLUConvBN
from .construct_utils import Transition
from .genotypes import PRIMITIVES, Genotype
class MixedOp(nn.Module):
def __init__(self, C, stride):
super(MixedOp, self).__init__()
self._ops = nn.ModuleList()
for primitive in PRIMITIVES:
op = OPS[primitive](C, stride, False)
self._ops.append(op)
def forward(self, x, weights):
return sum(w * op(x) for w, op in zip(weights, self._ops))
class Cell(nn.Module):
def __init__(self, steps, multiplier, C_prev_prev, C_prev, C, reduction, reduction_prev):
super(Cell, self).__init__()
self.reduction = reduction
if reduction_prev:
self.preprocess0 = FactorizedReduce(C_prev_prev, C, affine=False)
else:
self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, affine=False)
self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, affine=False)
self._steps = steps
self._multiplier = multiplier
self._ops = nn.ModuleList()
for i in range(self._steps):
for j in range(2+i):
stride = 2 if reduction and j < 2 else 1
op = MixedOp(C, stride)
self._ops.append(op)
def forward(self, s0, s1, weights):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
states = [s0, s1]
offset = 0
for i in range(self._steps):
clist = []
for j, h in enumerate(states):
x = self._ops[offset+j](h, weights[offset+j])
clist.append( x )
s = sum(clist)
offset += len(states)
states.append(s)
return torch.cat(states[-self._multiplier:], dim=1)
class NetworkF1(nn.Module):
def __init__(self, C, num_classes, layers, steps=4, multiplier=4, stem_multiplier=3):
super(NetworkF1, self).__init__()
self._C = C
self._num_classes = num_classes
self._layers = layers
self._steps = steps
self._multiplier = multiplier
C_curr = stem_multiplier*C
self.stem = nn.Sequential(
nn.Conv2d(3, C_curr, 3, padding=1, bias=False),
nn.BatchNorm2d(C_curr)
)
C_prev_prev, C_prev, C_curr = C_curr, C_curr, C
reduction_prev, cells = False, []
for i in range(layers):
if i in [layers//3, 2*layers//3]:
C_curr *= 2
reduction = True
else:
reduction = False
if reduction:
cell = Transition(C_prev_prev, C_prev, C_curr, reduction_prev, multiplier)
else:
cell = Cell(steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev)
reduction_prev = reduction
cells.append( cell )
C_prev_prev, C_prev = C_prev, multiplier*C_curr
self.cells = nn.ModuleList(cells)
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
# initialize architecture parameters
k = sum(1 for i in range(self._steps) for n in range(2+i))
num_ops = len(PRIMITIVES)
self.alphas_normal = Parameter(torch.Tensor(k, num_ops))
#self.alphas_reduce = Parameter(torch.Tensor(k, num_ops))
nn.init.normal_(self.alphas_normal, 0, 0.001)
#nn.init.normal_(self.alphas_reduce, 0, 0.001)
def set_tau(self, tau):
return -1
def get_tau(self):
return -1
def arch_parameters(self):
return [self.alphas_normal]
def base_parameters(self):
lists = list(self.stem.parameters()) + list(self.cells.parameters())
lists += list(self.global_pooling.parameters())
lists += list(self.classifier.parameters())
return lists
def forward(self, inputs):
batch, C, H, W = inputs.size()
s0 = s1 = self.stem(inputs)
for i, cell in enumerate(self.cells):
if cell.reduction:
s0, s1 = s1, cell(s0, s1)
else:
weights = F.softmax(self.alphas_normal, dim=-1)
s0, s1 = s1, cell(s0, s1, weights)
#print('{:} : s0 : {:}, s1 : {:}'.format(i, s0.size(), s1.size()))
out = self.global_pooling(s1)
out = out.view(batch, -1)
logits = self.classifier(out)
return logits
def genotype(self):
def _parse(weights):
gene, n, start = [], 2, 0
for i in range(self._steps):
end = start + n
W = weights[start:end].copy()
edges = sorted(range(i + 2), key=lambda x: -max(W[x][k] for k in range(len(W[x])) if k != PRIMITIVES.index('none')))[:2]
for j in edges:
k_best = None
for k in range(len(W[j])):
if k != PRIMITIVES.index('none'):
if k_best is None or W[j][k] > W[j][k_best]:
k_best = k
gene.append((PRIMITIVES[k_best], j, float(W[j][k_best])))
start = end
n += 1
return gene
with torch.no_grad():
gene_normal = _parse(F.softmax(self.alphas_normal, dim=-1).cpu().numpy())
#gene_reduce = _parse(F.softmax(self.alphas_normal, dim=-1).cpu().numpy())
concat = range(2+self._steps-self._multiplier, self._steps+2)
genotype = Genotype(
normal=gene_normal, normal_concat=concat,
reduce=None , reduce_concat=concat
)
return genotype

View File

@@ -1,183 +0,0 @@
# share parameters
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
from .operations import OPS, FactorizedReduce, ReLUConvBN
from .construct_utils import Transition
from .genotypes import PRIMITIVES, Genotype
class MixedOp(nn.Module):
def __init__(self, C, stride):
super(MixedOp, self).__init__()
self._ops = nn.ModuleList()
for primitive in PRIMITIVES:
op = OPS[primitive](C, stride, False)
self._ops.append(op)
def forward(self, x, weights, cpu_weights):
use_sum = sum([abs(_) > 1e-10 for _ in cpu_weights])
if use_sum > 3:
return sum(w * op(x) for w, op in zip(weights, self._ops))
else:
clist = []
for j, cpu_weight in enumerate(cpu_weights):
if abs(cpu_weight) > 1e-10:
clist.append( weights[j] * self._ops[j](x) )
assert len(clist) > 0, 'invalid length : {:}'.format(cpu_weights)
return sum(clist)
class Cell(nn.Module):
def __init__(self, steps, multiplier, C_prev_prev, C_prev, C, reduction, reduction_prev):
super(Cell, self).__init__()
self.reduction = reduction
if reduction_prev:
self.preprocess0 = FactorizedReduce(C_prev_prev, C, affine=False)
else:
self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, affine=False)
self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, affine=False)
self._steps = steps
self._multiplier = multiplier
self._ops = nn.ModuleList()
for i in range(self._steps):
for j in range(2+i):
stride = 2 if reduction and j < 2 else 1
op = MixedOp(C, stride)
self._ops.append(op)
def forward(self, s0, s1, weights):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
cpu_weights = weights.tolist()
states = [s0, s1]
offset = 0
for i in range(self._steps):
clist = []
for j, h in enumerate(states):
x = self._ops[offset+j](h, weights[offset+j], cpu_weights[offset+j])
clist.append( x )
s = sum(clist)
offset += len(states)
states.append(s)
return torch.cat(states[-self._multiplier:], dim=1)
class NetworkFACC1(nn.Module):
def __init__(self, C, num_classes, layers, steps=4, multiplier=4, stem_multiplier=3):
super(NetworkFACC1, self).__init__()
self._C = C
self._num_classes = num_classes
self._layers = layers
self._steps = steps
self._multiplier = multiplier
self.tau = 5
self.use_gumbel = True
C_curr = stem_multiplier*C
self.stem = nn.Sequential(
nn.Conv2d(3, C_curr, 3, padding=1, bias=False),
nn.BatchNorm2d(C_curr)
)
C_prev_prev, C_prev, C_curr = C_curr, C_curr, C
reduction_prev, cells = False, []
for i in range(layers):
if i in [layers//3, 2*layers//3]:
C_curr *= 2
reduction = True
else:
reduction = False
if reduction:
cell = Transition(C_prev_prev, C_prev, C_curr, reduction_prev, multiplier)
else:
cell = Cell(steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev)
reduction_prev = reduction
cells.append( cell )
C_prev_prev, C_prev = C_prev, multiplier*C_curr
self.cells = nn.ModuleList(cells)
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
# initialize architecture parameters
k = sum(1 for i in range(self._steps) for n in range(2+i))
num_ops = len(PRIMITIVES)
self.alphas_normal = Parameter(torch.Tensor(k, num_ops))
#self.alphas_reduce = Parameter(torch.Tensor(k, num_ops))
nn.init.normal_(self.alphas_normal, 0, 0.001)
#nn.init.normal_(self.alphas_reduce, 0, 0.001)
def set_gumbel(self, use_gumbel):
self.use_gumbel = use_gumbel
def set_tau(self, tau):
self.tau = tau
def get_tau(self):
return self.tau
def arch_parameters(self):
return [self.alphas_normal]
def base_parameters(self):
lists = list(self.stem.parameters()) + list(self.cells.parameters())
lists += list(self.global_pooling.parameters())
lists += list(self.classifier.parameters())
return lists
def forward(self, inputs):
batch, C, H, W = inputs.size()
s0 = s1 = self.stem(inputs)
for i, cell in enumerate(self.cells):
if cell.reduction:
s0, s1 = s1, cell(s0, s1)
else:
if self.use_gumbel : weights = F.gumbel_softmax(self.alphas_normal, self.tau, True)
else : weights = F.softmax(self.alphas_normal, dim=-1)
s0, s1 = s1, cell(s0, s1, weights)
#print('{:} : s0 : {:}, s1 : {:}'.format(i, s0.size(), s1.size()))
out = self.global_pooling(s1)
out = out.view(batch, -1)
logits = self.classifier(out)
return logits
def genotype(self):
def _parse(weights):
gene, n, start = [], 2, 0
for i in range(self._steps):
end = start + n
W = weights[start:end].copy()
edges = sorted(range(i + 2), key=lambda x: -max(W[x][k] for k in range(len(W[x])) if k != PRIMITIVES.index('none')))[:2]
for j in edges:
k_best = None
for k in range(len(W[j])):
if k != PRIMITIVES.index('none'):
if k_best is None or W[j][k] > W[j][k_best]:
k_best = k
gene.append((PRIMITIVES[k_best], j, float(W[j][k_best])))
start = end
n += 1
return gene
with torch.no_grad():
gene_normal = _parse(F.softmax(self.alphas_normal, dim=-1).cpu().numpy())
#gene_reduce = _parse(F.softmax(self.alphas_normal, dim=-1).cpu().numpy())
concat = range(2+self._steps-self._multiplier, self._steps+2)
genotype = Genotype(
normal=gene_normal, normal_concat=concat,
reduce=None , reduce_concat=concat
)
return genotype

View File

@@ -1,161 +0,0 @@
# share parameters
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
from .operations import OPS, FactorizedReduce, ReLUConvBN
from .genotypes import PRIMITIVES, Genotype
class MixedOp(nn.Module):
def __init__(self, C, stride):
super(MixedOp, self).__init__()
self._ops = nn.ModuleList()
for primitive in PRIMITIVES:
op = OPS[primitive](C, stride, False)
self._ops.append(op)
def forward(self, x, weights):
return sum(w * op(x) for w, op in zip(weights, self._ops))
class Cell(nn.Module):
def __init__(self, steps, multiplier, C_prev_prev, C_prev, C, reduction, reduction_prev):
super(Cell, self).__init__()
self.reduction = reduction
if reduction_prev:
self.preprocess0 = FactorizedReduce(C_prev_prev, C, affine=False)
else:
self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, affine=False)
self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, affine=False)
self._steps = steps
self._multiplier = multiplier
self._ops = nn.ModuleList()
for i in range(self._steps):
for j in range(2+i):
stride = 2 if reduction and j < 2 else 1
op = MixedOp(C, stride)
self._ops.append(op)
def forward(self, s0, s1, weights):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
states = [s0, s1]
offset = 0
for i in range(self._steps):
clist = []
for j, h in enumerate(states):
x = self._ops[offset+j](h, weights[offset+j])
clist.append( x )
s = sum(clist)
offset += len(states)
states.append(s)
return torch.cat(states[-self._multiplier:], dim=1)
class NetworkV1(nn.Module):
def __init__(self, C, num_classes, layers, steps=4, multiplier=4, stem_multiplier=3):
super(NetworkV1, self).__init__()
self._C = C
self._num_classes = num_classes
self._layers = layers
self._steps = steps
self._multiplier = multiplier
C_curr = stem_multiplier*C
self.stem = nn.Sequential(
nn.Conv2d(3, C_curr, 3, padding=1, bias=False),
nn.BatchNorm2d(C_curr)
)
C_prev_prev, C_prev, C_curr = C_curr, C_curr, C
reduction_prev, cells = False, []
for i in range(layers):
if i in [layers//3, 2*layers//3]:
C_curr *= 2
reduction = True
else:
reduction = False
cell = Cell(steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev)
reduction_prev = reduction
cells.append( cell )
C_prev_prev, C_prev = C_prev, multiplier*C_curr
self.cells = nn.ModuleList(cells)
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
# initialize architecture parameters
k = sum(1 for i in range(self._steps) for n in range(2+i))
num_ops = len(PRIMITIVES)
self.alphas_normal = Parameter(torch.Tensor(k, num_ops))
#self.alphas_reduce = Parameter(torch.Tensor(k, num_ops))
nn.init.normal_(self.alphas_normal, 0, 0.001)
#nn.init.normal_(self.alphas_reduce, 0, 0.001)
def set_tau(self, tau):
return -1
def get_tau(self):
return -1
def arch_parameters(self):
return [self.alphas_normal]
def base_parameters(self):
lists = list(self.stem.parameters()) + list(self.cells.parameters())
lists += list(self.global_pooling.parameters())
lists += list(self.classifier.parameters())
return lists
def forward(self, inputs):
batch, C, H, W = inputs.size()
s0 = s1 = self.stem(inputs)
for i, cell in enumerate(self.cells):
if cell.reduction:
weights = F.softmax(self.alphas_normal, dim=-1)
else:
weights = F.softmax(self.alphas_normal, dim=-1)
s0, s1 = s1, cell(s0, s1, weights)
out = self.global_pooling(s1)
out = out.view(batch, -1)
logits = self.classifier(out)
return logits
def genotype(self):
def _parse(weights):
gene, n, start = [], 2, 0
for i in range(self._steps):
end = start + n
W = weights[start:end].copy()
edges = sorted(range(i + 2), key=lambda x: -max(W[x][k] for k in range(len(W[x])) if k != PRIMITIVES.index('none')))[:2]
for j in edges:
k_best = None
for k in range(len(W[j])):
if k != PRIMITIVES.index('none'):
if k_best is None or W[j][k] > W[j][k_best]:
k_best = k
gene.append((PRIMITIVES[k_best], j, float(W[j][k_best])))
start = end
n += 1
return gene
with torch.no_grad():
gene_normal = _parse(F.softmax(self.alphas_normal, dim=-1).cpu().numpy())
gene_reduce = _parse(F.softmax(self.alphas_normal, dim=-1).cpu().numpy())
concat = range(2+self._steps-self._multiplier, self._steps+2)
genotype = Genotype(
normal=gene_normal, normal_concat=concat,
reduce=gene_reduce, reduce_concat=concat
)
return genotype

View File

@@ -1,171 +0,0 @@
# random selection
import torch
import random
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
from .operations import OPS, FactorizedReduce, ReLUConvBN
from .genotypes import PRIMITIVES, Genotype
from .construct_utils import random_select, all_select
class MixedOp(nn.Module):
def __init__(self, C, stride):
super(MixedOp, self).__init__()
self._ops = nn.ModuleList()
for primitive in PRIMITIVES:
op = OPS[primitive](C, stride, False)
self._ops.append(op)
def forward(self, x, weights, cpu_weights):
return sum(w * op(x) for w, op in zip(weights, self._ops))
class Cell(nn.Module):
def __init__(self, steps, multiplier, C_prev_prev, C_prev, C, reduction, reduction_prev):
super(Cell, self).__init__()
self.reduction = reduction
if reduction_prev:
self.preprocess0 = FactorizedReduce(C_prev_prev, C, affine=False)
else:
self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, affine=False)
self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, affine=False)
self._steps = steps
self._multiplier = multiplier
self._ops = nn.ModuleList()
for i in range(self._steps):
for j in range(2+i):
stride = 2 if reduction and j < 2 else 1
op = MixedOp(C, stride)
self._ops.append(op)
def forward(self, s0, s1, weights):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
cpu_weights = weights.tolist()
states = [s0, s1]
offset = 0
for i in range(self._steps):
clist = []
if i == 0:
indicator = all_select( len(states) )
else:
indicator = random_select( len(states), 0.5 )
for j, h in enumerate(states):
if indicator[j] == 0: continue
x = self._ops[offset+j](h, weights[offset+j], cpu_weights[offset+j])
clist.append( x )
s = sum(clist) / sum(indicator)
offset += len(states)
states.append(s)
return torch.cat(states[-self._multiplier:], dim=1)
class NetworkV3(nn.Module):
def __init__(self, C, num_classes, layers, steps=4, multiplier=4, stem_multiplier=3):
super(NetworkV3, self).__init__()
self._C = C
self._num_classes = num_classes
self._layers = layers
self._steps = steps
self._multiplier = multiplier
C_curr = stem_multiplier*C
self.stem = nn.Sequential(
nn.Conv2d(3, C_curr, 3, padding=1, bias=False),
nn.BatchNorm2d(C_curr)
)
C_prev_prev, C_prev, C_curr = C_curr, C_curr, C
reduction_prev, cells = False, []
for i in range(layers):
if i in [layers//3, 2*layers//3]:
C_curr *= 2
reduction = True
else:
reduction = False
cell = Cell(steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev)
reduction_prev = reduction
cells.append( cell )
C_prev_prev, C_prev = C_prev, multiplier*C_curr
self.cells = nn.ModuleList(cells)
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.tau = 5
# initialize architecture parameters
k = sum(1 for i in range(self._steps) for n in range(2+i))
num_ops = len(PRIMITIVES)
self.alphas_normal = Parameter(torch.Tensor(k, num_ops))
self.alphas_reduce = Parameter(torch.Tensor(k, num_ops))
nn.init.normal_(self.alphas_normal, 0, 0.001)
nn.init.normal_(self.alphas_reduce, 0, 0.001)
def set_tau(self, tau):
self.tau = tau
def get_tau(self):
return self.tau
def arch_parameters(self):
return [self.alphas_normal, self.alphas_reduce]
def base_parameters(self):
lists = list(self.stem.parameters()) + list(self.cells.parameters())
lists += list(self.global_pooling.parameters())
lists += list(self.classifier.parameters())
return lists
def forward(self, inputs):
batch, C, H, W = inputs.size()
s0 = s1 = self.stem(inputs)
for i, cell in enumerate(self.cells):
if cell.reduction:
weights = F.softmax(self.alphas_reduce, dim=-1)
else:
weights = F.softmax(self.alphas_reduce, dim=-1)
s0, s1 = s1, cell(s0, s1, weights)
out = self.global_pooling(s1)
out = out.view(batch, -1)
logits = self.classifier(out)
return logits
def genotype(self):
def _parse(weights):
gene, n, start = [], 2, 0
for i in range(self._steps):
end = start + n
W = weights[start:end].copy()
edges = sorted(range(i + 2), key=lambda x: -max(W[x][k] for k in range(len(W[x])) if k != PRIMITIVES.index('none')))[:2]
for j in edges:
k_best = None
for k in range(len(W[j])):
if k != PRIMITIVES.index('none'):
if k_best is None or W[j][k] > W[j][k_best]:
k_best = k
gene.append((PRIMITIVES[k_best], j, float(W[j][k_best])))
start = end
n += 1
return gene
with torch.no_grad():
gene_normal = _parse(F.softmax(self.alphas_normal, dim=-1).cpu().numpy())
gene_reduce = _parse(F.softmax(self.alphas_reduce, dim=-1).cpu().numpy())
concat = range(2+self._steps-self._multiplier, self._steps+2)
genotype = Genotype(
normal=gene_normal, normal_concat=concat,
reduce=gene_reduce, reduce_concat=concat
)
return genotype

View File

@@ -1,176 +0,0 @@
# random selection
import torch
import random
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
from .operations import OPS, FactorizedReduce, ReLUConvBN
from .genotypes import PRIMITIVES, Genotype
from .construct_utils import random_select, all_select
class MixedOp(nn.Module):
def __init__(self, C, stride):
super(MixedOp, self).__init__()
self._ops = nn.ModuleList()
for primitive in PRIMITIVES:
op = OPS[primitive](C, stride, False)
self._ops.append(op)
def forward(self, x, weights, cpu_weights):
indicators = random_select( len(cpu_weights), 0.5 )
clist, ws = [], []
for w, indicator, op in zip(weights, indicators, self._ops):
if indicator:
clist.append( w * op(x) )
ws.append( w )
return sum(clist) / sum(ws)
class Cell(nn.Module):
def __init__(self, steps, multiplier, C_prev_prev, C_prev, C, reduction, reduction_prev):
super(Cell, self).__init__()
self.reduction = reduction
if reduction_prev:
self.preprocess0 = FactorizedReduce(C_prev_prev, C, affine=False)
else:
self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, affine=False)
self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, affine=False)
self._steps = steps
self._multiplier = multiplier
self._ops = nn.ModuleList()
for i in range(self._steps):
for j in range(2+i):
stride = 2 if reduction and j < 2 else 1
op = MixedOp(C, stride)
self._ops.append(op)
def forward(self, s0, s1, weights):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
cpu_weights = weights.tolist()
states = [s0, s1]
offset = 0
for i in range(self._steps):
clist = []
if i == 0:
indicator = all_select( len(states) )
else:
indicator = random_select( len(states), 0.5 )
for j, h in enumerate(states):
if indicator[j] == 0: continue
x = self._ops[offset+j](h, weights[offset+j], cpu_weights[offset+j])
clist.append( x )
s = sum(clist) / sum(indicator)
offset += len(states)
states.append(s)
return torch.cat(states[-self._multiplier:], dim=1)
class NetworkV4(nn.Module):
def __init__(self, C, num_classes, layers, steps=4, multiplier=4, stem_multiplier=3):
super(NetworkV4, self).__init__()
self._C = C
self._num_classes = num_classes
self._layers = layers
self._steps = steps
self._multiplier = multiplier
C_curr = stem_multiplier*C
self.stem = nn.Sequential(
nn.Conv2d(3, C_curr, 3, padding=1, bias=False),
nn.BatchNorm2d(C_curr)
)
C_prev_prev, C_prev, C_curr = C_curr, C_curr, C
reduction_prev, cells = False, []
for i in range(layers):
if i in [layers//3, 2*layers//3]:
C_curr *= 2
reduction = True
else:
reduction = False
cell = Cell(steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev)
reduction_prev = reduction
cells.append( cell )
C_prev_prev, C_prev = C_prev, multiplier*C_curr
self.cells = nn.ModuleList(cells)
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.tau = 5
# initialize architecture parameters
k = sum(1 for i in range(self._steps) for n in range(2+i))
num_ops = len(PRIMITIVES)
self.alphas_normal = Parameter(torch.Tensor(k, num_ops))
self.alphas_reduce = Parameter(torch.Tensor(k, num_ops))
nn.init.normal_(self.alphas_normal, 0, 0.001)
nn.init.normal_(self.alphas_reduce, 0, 0.001)
def set_tau(self, tau):
self.tau = tau
def get_tau(self):
return self.tau
def arch_parameters(self):
return [self.alphas_normal, self.alphas_reduce]
def base_parameters(self):
lists = list(self.stem.parameters()) + list(self.cells.parameters())
lists += list(self.global_pooling.parameters())
lists += list(self.classifier.parameters())
return lists
def forward(self, inputs):
batch, C, H, W = inputs.size()
s0 = s1 = self.stem(inputs)
for i, cell in enumerate(self.cells):
if cell.reduction:
weights = F.softmax(self.alphas_reduce, dim=-1)
else:
weights = F.softmax(self.alphas_reduce, dim=-1)
s0, s1 = s1, cell(s0, s1, weights)
out = self.global_pooling(s1)
out = out.view(batch, -1)
logits = self.classifier(out)
return logits
def genotype(self):
def _parse(weights):
gene, n, start = [], 2, 0
for i in range(self._steps):
end = start + n
W = weights[start:end].copy()
edges = sorted(range(i + 2), key=lambda x: -max(W[x][k] for k in range(len(W[x])) if k != PRIMITIVES.index('none')))[:2]
for j in edges:
k_best = None
for k in range(len(W[j])):
if k != PRIMITIVES.index('none'):
if k_best is None or W[j][k] > W[j][k_best]:
k_best = k
gene.append((PRIMITIVES[k_best], j, float(W[j][k_best])))
start = end
n += 1
return gene
with torch.no_grad():
gene_normal = _parse(F.softmax(self.alphas_normal, dim=-1).cpu().numpy())
gene_reduce = _parse(F.softmax(self.alphas_reduce, dim=-1).cpu().numpy())
concat = range(2+self._steps-self._multiplier, self._steps+2)
genotype = Genotype(
normal=gene_normal, normal_concat=concat,
reduce=gene_reduce, reduce_concat=concat
)
return genotype

View File

@@ -1,174 +0,0 @@
# gumbel softmax
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
from .operations import OPS, FactorizedReduce, ReLUConvBN
from .genotypes import PRIMITIVES, Genotype
from .construct_utils import random_select, all_select
class MixedOp(nn.Module):
def __init__(self, C, stride):
super(MixedOp, self).__init__()
self._ops = nn.ModuleList()
for primitive in PRIMITIVES:
op = OPS[primitive](C, stride, False)
self._ops.append(op)
def forward(self, x, weights, cpu_weights):
clist = []
for j, cpu_weight in enumerate(cpu_weights):
if abs(cpu_weight) > 1e-10:
clist.append( weights[j] * self._ops[j](x) )
assert len(clist) > 0, 'invalid length : {:}'.format(cpu_weights)
if len(clist) == 1: return clist[0]
else : return sum(clist)
class Cell(nn.Module):
def __init__(self, steps, multiplier, C_prev_prev, C_prev, C, reduction, reduction_prev):
super(Cell, self).__init__()
self.reduction = reduction
if reduction_prev:
self.preprocess0 = FactorizedReduce(C_prev_prev, C, affine=False)
else:
self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, affine=False)
self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, affine=False)
self._steps = steps
self._multiplier = multiplier
self._ops = nn.ModuleList()
for i in range(self._steps):
for j in range(2+i):
stride = 2 if reduction and j < 2 else 1
op = MixedOp(C, stride)
self._ops.append(op)
def forward(self, s0, s1, weights):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
cpu_weights = weights.tolist()
states = [s0, s1]
offset = 0
for i in range(self._steps):
clist = []
if i == 0: indicator = all_select( len(states) )
else : indicator = random_select( len(states), 0.6 )
for j, h in enumerate(states):
if indicator[j] == 0: continue
x = self._ops[offset+j](h, weights[offset+j], cpu_weights[offset+j])
clist.append( x )
s = sum(clist)
offset += len(states)
states.append(s)
return torch.cat(states[-self._multiplier:], dim=1)
class NetworkV5(nn.Module):
def __init__(self, C, num_classes, layers, steps=4, multiplier=4, stem_multiplier=3):
super(NetworkV5, self).__init__()
self._C = C
self._num_classes = num_classes
self._layers = layers
self._steps = steps
self._multiplier = multiplier
C_curr = stem_multiplier*C
self.stem = nn.Sequential(
nn.Conv2d(3, C_curr, 3, padding=1, bias=False),
nn.BatchNorm2d(C_curr)
)
C_prev_prev, C_prev, C_curr = C_curr, C_curr, C
reduction_prev, cells = False, []
for i in range(layers):
if i in [layers//3, 2*layers//3]:
C_curr *= 2
reduction = True
else:
reduction = False
cell = Cell(steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev)
reduction_prev = reduction
cells.append( cell )
C_prev_prev, C_prev = C_prev, multiplier*C_curr
self.cells = nn.ModuleList(cells)
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.tau = 5
# initialize architecture parameters
k = sum(1 for i in range(self._steps) for n in range(2+i))
num_ops = len(PRIMITIVES)
self.alphas_normal = Parameter(torch.Tensor(k, num_ops))
self.alphas_reduce = Parameter(torch.Tensor(k, num_ops))
nn.init.normal_(self.alphas_normal, 0, 0.001)
nn.init.normal_(self.alphas_reduce, 0, 0.001)
def set_tau(self, tau):
self.tau = tau
def get_tau(self):
return self.tau
def arch_parameters(self):
return [self.alphas_normal, self.alphas_reduce]
def base_parameters(self):
lists = list(self.stem.parameters()) + list(self.cells.parameters())
lists += list(self.global_pooling.parameters())
lists += list(self.classifier.parameters())
return lists
def forward(self, inputs):
batch, C, H, W = inputs.size()
s0 = s1 = self.stem(inputs)
for i, cell in enumerate(self.cells):
if cell.reduction:
weights = F.gumbel_softmax(self.alphas_reduce, self.tau, True)
else:
weights = F.gumbel_softmax(self.alphas_normal, self.tau, True)
s0, s1 = s1, cell(s0, s1, weights)
out = self.global_pooling(s1)
out = out.view(batch, -1)
logits = self.classifier(out)
return logits
def genotype(self):
def _parse(weights):
gene, n, start = [], 2, 0
for i in range(self._steps):
end = start + n
W = weights[start:end].copy()
edges = sorted(range(i + 2), key=lambda x: -max(W[x][k] for k in range(len(W[x])) if k != PRIMITIVES.index('none')))[:2]
for j in edges:
k_best = None
for k in range(len(W[j])):
if k != PRIMITIVES.index('none'):
if k_best is None or W[j][k] > W[j][k_best]:
k_best = k
gene.append((PRIMITIVES[k_best], j, float(W[j][k_best])))
start = end
n += 1
return gene
with torch.no_grad():
gene_normal = _parse(F.softmax(self.alphas_normal, dim=-1).cpu().numpy())
gene_reduce = _parse(F.softmax(self.alphas_reduce, dim=-1).cpu().numpy())
concat = range(2+self._steps-self._multiplier, self._steps+2)
genotype = Genotype(
normal=gene_normal, normal_concat=concat,
reduce=gene_reduce, reduce_concat=concat
)
return genotype

View File

@@ -2,6 +2,7 @@ import torch
import torch.nn as nn
import numpy as np
def count_parameters_in_MB(model):
if isinstance(model, nn.Module):
return np.sum(np.prod(v.size()) for v in model.parameters())/1e6