Update the sync data v1

This commit is contained in:
D-X-Y
2021-05-24 13:06:10 +08:00
parent da2575cc6c
commit 3ee0d348af
17 changed files with 228 additions and 274 deletions

View File

@@ -222,7 +222,7 @@ def pretrain_v2(base_model, meta_model, criterion, xenv, args, logger):
def main(args):
logger, env_info, model_kwargs = lfna_setup(args)
logger, model_kwargs = lfna_setup(args)
train_env = get_synthetic_env(mode="train", version=args.env_version)
valid_env = get_synthetic_env(mode="valid", version=args.env_version)
all_env = get_synthetic_env(mode=None, version=args.env_version)

View File

@@ -11,33 +11,6 @@ from xautodl.datasets.synthetic_core import get_synthetic_env
def lfna_setup(args):
prepare_seed(args.rand_seed)
logger = prepare_logger(args)
cache_path = (
logger.path(None) / ".." / "env-{:}-info.pth".format(args.env_version)
).resolve()
if cache_path.exists():
env_info = torch.load(cache_path)
else:
env_info = dict()
dynamic_env = get_synthetic_env(version=args.env_version)
env_info["total"] = len(dynamic_env)
for idx, (timestamp, (_allx, _ally)) in enumerate(tqdm(dynamic_env)):
env_info["{:}-timestamp".format(idx)] = timestamp
env_info["{:}-x".format(idx)] = _allx
env_info["{:}-y".format(idx)] = _ally
env_info["dynamic_env"] = dynamic_env
torch.save(env_info, cache_path)
"""
model_kwargs = dict(
config=dict(model_type="simple_mlp"),
input_dim=1,
output_dim=1,
hidden_dim=args.hidden_dim,
act_cls="leaky_relu",
norm_cls="identity",
)
"""
model_kwargs = dict(
config=dict(model_type="norm_mlp"),
input_dim=1,
@@ -46,7 +19,7 @@ def lfna_setup(args):
act_cls="gelu",
norm_cls="layer_norm_1d",
)
return logger, env_info, model_kwargs
return logger, model_kwargs
def train_model(model, dataset, lr, epochs):

View File

@@ -20,14 +20,13 @@ matplotlib.use("agg")
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
lib_dir = (Path(__file__).parent / ".." / "..").resolve()
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from models.xcore import get_model
from datasets.synthetic_core import get_synthetic_env
from utils.temp_sync import optimize_fn, evaluate_fn
from procedures.metric_utils import MSEMetric
from xautodl.models.xcore import get_model
from xautodl.datasets.synthetic_core import get_synthetic_env
from xautodl.procedures.metric_utils import MSEMetric
def plot_scatter(cur_ax, xs, ys, color, alpha, linewidths, label=None):
@@ -181,10 +180,17 @@ def compare_cl(save_dir):
def visualize_env(save_dir, version):
save_dir = Path(str(save_dir))
save_dir.mkdir(parents=True, exist_ok=True)
for substr in ("pdf", "png"):
sub_save_dir = save_dir / substr
sub_save_dir.mkdir(parents=True, exist_ok=True)
dynamic_env = get_synthetic_env(version=version)
min_t, max_t = dynamic_env.min_timestamp, dynamic_env.max_timestamp
# min_t, max_t = dynamic_env.min_timestamp, dynamic_env.max_timestamp
allxs, allys = [], []
for idx, (timestamp, (allx, ally)) in enumerate(tqdm(dynamic_env, ncols=50)):
allxs.append(allx)
allys.append(ally)
allxs, allys = torch.cat(allxs).view(-1), torch.cat(allys).view(-1)
for idx, (timestamp, (allx, ally)) in enumerate(tqdm(dynamic_env, ncols=50)):
dpi, width, height = 30, 1800, 1400
figsize = width / float(dpi), height / float(dpi)
@@ -201,21 +207,18 @@ def visualize_env(save_dir, version):
tick.label.set_rotation(10)
for tick in cur_ax.yaxis.get_major_ticks():
tick.label.set_fontsize(LabelSize - font_gap)
if version == "v1":
cur_ax.set_xlim(-2, 2)
cur_ax.set_ylim(-8, 8)
elif version == "v2":
cur_ax.set_xlim(-10, 10)
cur_ax.set_ylim(-60, 60)
cur_ax.set_xlim(round(allxs.min().item(), 1), round(allxs.max().item(), 1))
cur_ax.set_ylim(round(allys.min().item(), 1), round(allys.max().item(), 1))
cur_ax.legend(loc=1, fontsize=LegendFontsize)
save_path = save_dir / "v{:}-{:05d}".format(version, idx)
fig.savefig(str(save_path) + ".pdf", dpi=dpi, bbox_inches="tight", format="pdf")
fig.savefig(str(save_path) + ".png", dpi=dpi, bbox_inches="tight", format="png")
pdf_save_path = save_dir / "pdf" / "v{:}-{:05d}.pdf".format(version, idx)
fig.savefig(str(pdf_save_path), dpi=dpi, bbox_inches="tight", format="pdf")
png_save_path = save_dir / "png" / "v{:}-{:05d}.png".format(version, idx)
fig.savefig(str(png_save_path), dpi=dpi, bbox_inches="tight", format="png")
plt.close("all")
save_dir = save_dir.resolve()
base_cmd = "ffmpeg -y -i {xdir}/v{version}-%05d.png -vf scale=1800:1400 -pix_fmt yuv420p -vb 5000k".format(
xdir=save_dir, version=version
xdir=save_dir / "png", version=version
)
print(base_cmd)
os.system("{:} {xdir}/env-{ver}.mp4".format(base_cmd, xdir=save_dir, ver=version))
@@ -371,7 +374,7 @@ if __name__ == "__main__":
)
args = parser.parse_args()
# visualize_env(os.path.join(args.save_dir, "vis-env"), "v1")
visualize_env(os.path.join(args.save_dir, "vis-env"), "v1")
# visualize_env(os.path.join(args.save_dir, "vis-env"), "v2")
compare_algs(os.path.join(args.save_dir, "compare-alg"), args.env_version)
# compare_algs(os.path.join(args.save_dir, "compare-alg"), args.env_version)
# compare_cl(os.path.join(args.save_dir, "compare-cl"))

View File

@@ -13,7 +13,10 @@ from xautodl.config_utils import dict2config
# NAS-Bench-201 related module or function
from xautodl.models import CellStructure, get_cell_based_tiny_net
from xautodl.procedures import bench_pure_evaluate as pure_evaluate, get_nas_bench_loaders
from xautodl.procedures import (
bench_pure_evaluate as pure_evaluate,
get_nas_bench_loaders,
)
from nas_201_api import NASBench201API, ArchResults, ResultsCount
api = NASBench201API(

View File

@@ -0,0 +1,21 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 #
#####################################################
# python test-dynamic.py
#####################################################
import sys
from pathlib import Path
lib_dir = (Path(__file__).parent / ".." / "..").resolve()
print("LIB-DIR: {:}".format(lib_dir))
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from xautodl.datasets.math_core import ConstantFunc
from xautodl.datasets.math_core import GaussianDGenerator
mean_generator = ConstantFunc(0)
cov_generator = ConstantFunc(1)
generator = GaussianDGenerator([mean_generator], [[cov_generator]], (-1, 1))
generator(0, 10)

View File

@@ -19,9 +19,11 @@ import seaborn as sns
matplotlib.use("agg")
import matplotlib.pyplot as plt
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
lib_dir = (Path(__file__).parent / ".." / "..").resolve()
print("LIB-DIR: {:}".format(lib_dir))
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from log_utils import time_string
from nats_bench import create
from models import get_cell_based_tiny_net

View File

@@ -3,11 +3,7 @@ from copy import deepcopy
import torchvision.models as models
from pathlib import Path
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from utils import weight_watcher
from xautodl.utils import weight_watcher
def main():