Upgrade spaces and add more tests
This commit is contained in:
@@ -33,7 +33,15 @@ DEFAULT_NET_CONFIG = dict(
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
num_heads=8,
|
||||
qkv_bias=False,
|
||||
qk_scale=None,
|
||||
attn_drop=0.0,
|
||||
proj_drop=0.0,
|
||||
):
|
||||
super(Attention, self).__init__()
|
||||
self.num_heads = num_heads
|
||||
head_dim = dim // num_heads
|
||||
@@ -46,8 +54,16 @@ class Attention(nn.Module):
|
||||
|
||||
def forward(self, x):
|
||||
B, N, C = x.shape
|
||||
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
||||
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
||||
qkv = (
|
||||
self.qkv(x)
|
||||
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
||||
.permute(2, 0, 3, 1, 4)
|
||||
)
|
||||
q, k, v = (
|
||||
qkv[0],
|
||||
qkv[1],
|
||||
qkv[2],
|
||||
) # make torchscript happy (cannot use tensor as tuple)
|
||||
|
||||
attn = (q @ k.transpose(-2, -1)) * self.scale
|
||||
attn = attn.softmax(dim=-1)
|
||||
@@ -76,13 +92,25 @@ class Block(nn.Module):
|
||||
super(Block, self).__init__()
|
||||
self.norm1 = norm_layer(dim)
|
||||
self.attn = Attention(
|
||||
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=mlp_drop
|
||||
dim,
|
||||
num_heads=num_heads,
|
||||
qkv_bias=qkv_bias,
|
||||
qk_scale=qk_scale,
|
||||
attn_drop=attn_drop,
|
||||
proj_drop=mlp_drop,
|
||||
)
|
||||
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
||||
self.drop_path = xlayers.DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
||||
self.drop_path = (
|
||||
xlayers.DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
||||
)
|
||||
self.norm2 = norm_layer(dim)
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
self.mlp = xlayers.MLP(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=mlp_drop)
|
||||
self.mlp = xlayers.MLP(
|
||||
in_features=dim,
|
||||
hidden_features=mlp_hidden_dim,
|
||||
act_layer=act_layer,
|
||||
drop=mlp_drop,
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
x = x + self.drop_path(self.attn(self.norm1(x)))
|
||||
@@ -144,9 +172,13 @@ class TransformerModel(nn.Module):
|
||||
self.input_embed = SimpleEmbed(d_feat, embed_dim=embed_dim)
|
||||
|
||||
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
||||
self.pos_embed = xlayers.PositionalEncoder(d_model=embed_dim, max_seq_len=max_seq_len, dropout=pos_drop)
|
||||
self.pos_embed = xlayers.PositionalEncoder(
|
||||
d_model=embed_dim, max_seq_len=max_seq_len, dropout=pos_drop
|
||||
)
|
||||
|
||||
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
||||
dpr = [
|
||||
x.item() for x in torch.linspace(0, drop_path_rate, depth)
|
||||
] # stochastic depth decay rule
|
||||
self.blocks = nn.ModuleList(
|
||||
[
|
||||
Block(
|
||||
@@ -184,7 +216,9 @@ class TransformerModel(nn.Module):
|
||||
batch, flatten_size = x.shape
|
||||
feats = self.input_embed(x) # batch * 60 * 64
|
||||
|
||||
cls_tokens = self.cls_token.expand(batch, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
||||
cls_tokens = self.cls_token.expand(
|
||||
batch, -1, -1
|
||||
) # stole cls_tokens impl from Phil Wang, thanks
|
||||
feats_w_ct = torch.cat((cls_tokens, feats), dim=1)
|
||||
feats_w_tp = self.pos_embed(feats_w_ct)
|
||||
|
||||
|
Reference in New Issue
Block a user