Upgrade spaces and add more tests

This commit is contained in:
D-X-Y
2021-03-18 15:04:14 +08:00
parent 85ee0ad4eb
commit 38409e602f
12 changed files with 386 additions and 84 deletions

View File

@@ -37,14 +37,22 @@ from qlib.data.dataset.handler import DataHandlerLP
DEFAULT_OPT_CONFIG = dict(
epochs=200, lr=0.001, batch_size=2000, early_stop=20, loss="mse", optimizer="adam", num_workers=4
epochs=200,
lr=0.001,
batch_size=2000,
early_stop=20,
loss="mse",
optimizer="adam",
num_workers=4,
)
class QuantTransformer(Model):
"""Transformer-based Quant Model"""
def __init__(self, net_config=None, opt_config=None, metric="", GPU=0, seed=None, **kwargs):
def __init__(
self, net_config=None, opt_config=None, metric="", GPU=0, seed=None, **kwargs
):
# Set logger.
self.logger = get_module_logger("QuantTransformer")
self.logger.info("QuantTransformer PyTorch version...")
@@ -53,7 +61,9 @@ class QuantTransformer(Model):
self.net_config = net_config or DEFAULT_NET_CONFIG
self.opt_config = opt_config or DEFAULT_OPT_CONFIG
self.metric = metric
self.device = torch.device("cuda:{:}".format(GPU) if torch.cuda.is_available() and GPU >= 0 else "cpu")
self.device = torch.device(
"cuda:{:}".format(GPU) if torch.cuda.is_available() and GPU >= 0 else "cpu"
)
self.seed = seed
self.logger.info(
@@ -84,11 +94,17 @@ class QuantTransformer(Model):
self.logger.info("model size: {:.3f} MB".format(count_parameters(self.model)))
if self.opt_config["optimizer"] == "adam":
self.train_optimizer = optim.Adam(self.model.parameters(), lr=self.opt_config["lr"])
self.train_optimizer = optim.Adam(
self.model.parameters(), lr=self.opt_config["lr"]
)
elif self.opt_config["optimizer"] == "adam":
self.train_optimizer = optim.SGD(self.model.parameters(), lr=self.opt_config["lr"])
self.train_optimizer = optim.SGD(
self.model.parameters(), lr=self.opt_config["lr"]
)
else:
raise NotImplementedError("optimizer {:} is not supported!".format(optimizer))
raise NotImplementedError(
"optimizer {:} is not supported!".format(optimizer)
)
self.fitted = False
self.model.to(self.device)
@@ -111,7 +127,9 @@ class QuantTransformer(Model):
else:
raise ValueError("unknown metric `{:}`".format(self.metric))
def train_or_test_epoch(self, xloader, model, loss_fn, metric_fn, is_train, optimizer=None):
def train_or_test_epoch(
self, xloader, model, loss_fn, metric_fn, is_train, optimizer=None
):
if is_train:
model.train()
else:
@@ -173,7 +191,11 @@ class QuantTransformer(Model):
)
save_dir = get_or_create_path(save_dir, return_dir=True)
self.logger.info("Fit procedure for [{:}] with save path={:}".format(self.__class__.__name__, save_dir))
self.logger.info(
"Fit procedure for [{:}] with save path={:}".format(
self.__class__.__name__, save_dir
)
)
def _internal_test(ckp_epoch=None, results_dict=None):
with torch.no_grad():
@@ -186,8 +208,10 @@ class QuantTransformer(Model):
test_loss, test_score = self.train_or_test_epoch(
test_loader, self.model, self.loss_fn, self.metric_fn, False, None
)
xstr = "train-score={:.6f}, valid-score={:.6f}, test-score={:.6f}".format(
train_score, valid_score, test_score
xstr = (
"train-score={:.6f}, valid-score={:.6f}, test-score={:.6f}".format(
train_score, valid_score, test_score
)
)
if ckp_epoch is not None and isinstance(results_dict, dict):
results_dict["train"][ckp_epoch] = train_score
@@ -199,18 +223,26 @@ class QuantTransformer(Model):
ckp_path = os.path.join(save_dir, "{:}.pth".format(self.__class__.__name__))
if os.path.exists(ckp_path):
ckp_data = torch.load(ckp_path)
stop_steps, best_score, best_epoch = ckp_data['stop_steps'], ckp_data['best_score'], ckp_data['best_epoch']
start_epoch, best_param = ckp_data['start_epoch'], ckp_data['best_param']
results_dict = ckp_data['results_dict']
self.model.load_state_dict(ckp_data['net_state_dict'])
self.train_optimizer.load_state_dict(ckp_data['opt_state_dict'])
stop_steps, best_score, best_epoch = (
ckp_data["stop_steps"],
ckp_data["best_score"],
ckp_data["best_epoch"],
)
start_epoch, best_param = ckp_data["start_epoch"], ckp_data["best_param"]
results_dict = ckp_data["results_dict"]
self.model.load_state_dict(ckp_data["net_state_dict"])
self.train_optimizer.load_state_dict(ckp_data["opt_state_dict"])
self.logger.info("Resume from existing checkpoint: {:}".format(ckp_path))
else:
stop_steps, best_score, best_epoch = 0, -np.inf, -1
start_epoch, best_param = 0, None
results_dict = dict(train=OrderedDict(), valid=OrderedDict(), test=OrderedDict())
results_dict = dict(
train=OrderedDict(), valid=OrderedDict(), test=OrderedDict()
)
_, eval_str = _internal_test(-1, results_dict)
self.logger.info("Training from scratch, metrics@start: {:}".format(eval_str))
self.logger.info(
"Training from scratch, metrics@start: {:}".format(eval_str)
)
for iepoch in range(start_epoch, self.opt_config["epochs"]):
self.logger.info(
@@ -219,20 +251,35 @@ class QuantTransformer(Model):
)
)
train_loss, train_score = self.train_or_test_epoch(
train_loader, self.model, self.loss_fn, self.metric_fn, True, self.train_optimizer
train_loader,
self.model,
self.loss_fn,
self.metric_fn,
True,
self.train_optimizer,
)
self.logger.info(
"Training :: loss={:.6f}, score={:.6f}".format(train_loss, train_score)
)
self.logger.info("Training :: loss={:.6f}, score={:.6f}".format(train_loss, train_score))
current_eval_scores, eval_str = _internal_test(iepoch, results_dict)
self.logger.info("Evaluating :: {:}".format(eval_str))
if current_eval_scores["valid"] > best_score:
stop_steps, best_epoch, best_score = 0, iepoch, current_eval_scores["valid"]
stop_steps, best_epoch, best_score = (
0,
iepoch,
current_eval_scores["valid"],
)
best_param = copy.deepcopy(self.model.state_dict())
else:
stop_steps += 1
if stop_steps >= self.opt_config["early_stop"]:
self.logger.info("early stop at {:}-th epoch, where the best is @{:}".format(iepoch, best_epoch))
self.logger.info(
"early stop at {:}-th epoch, where the best is @{:}".format(
iepoch, best_epoch
)
)
break
save_info = dict(
net_config=self.net_config,
@@ -247,9 +294,11 @@ class QuantTransformer(Model):
start_epoch=iepoch + 1,
)
torch.save(save_info, ckp_path)
self.logger.info("The best score: {:.6f} @ {:02d}-th epoch".format(best_score, best_epoch))
self.logger.info(
"The best score: {:.6f} @ {:02d}-th epoch".format(best_score, best_epoch)
)
self.model.load_state_dict(best_param)
_, eval_str = _internal_test('final', results_dict)
_, eval_str = _internal_test("final", results_dict)
self.logger.info("Reload the best parameter :: {:}".format(eval_str))
if self.use_gpu: