Update models

This commit is contained in:
D-X-Y
2021-03-23 11:13:51 +00:00
parent 01397660de
commit 379b904203
7 changed files with 175 additions and 38 deletions

View File

@@ -6,7 +6,7 @@ import inspect
import os
import pprint
import logging
from copy import deepcopy
import qlib
from qlib.utils import init_instance_by_config
from qlib.workflow import R
@@ -33,11 +33,14 @@ def set_log_basic_config(filename=None, format=None, level=None):
if format is None:
format = C.logging_config["formatters"]["logger_format"]["format"]
# Remove all handlers associated with the root logger object.
for handler in logging.root.handlers[:]:
logging.root.removeHandler(handler)
logging.basicConfig(filename=filename, format=format, level=level)
def update_gpu(config, gpu):
config = config.copy()
config = deepcopy(config)
if "task" in config and "model" in config["task"]:
if "GPU" in config["task"]["model"]:
config["task"]["model"]["GPU"] = gpu
@@ -59,13 +62,20 @@ def update_gpu(config, gpu):
def update_market(config, market):
config = config.copy()
config = deepcopy(config.copy())
config["market"] = market
config["data_handler_config"]["instruments"] = market
return config
def run_exp(task_config, dataset, experiment_name, recorder_name, uri):
def run_exp(
task_config,
dataset,
experiment_name,
recorder_name,
uri,
model_obj_name="model.pkl",
):
model = init_instance_by_config(task_config["model"])
model_fit_kwargs = dict(dataset=dataset)
@@ -80,6 +90,7 @@ def run_exp(task_config, dataset, experiment_name, recorder_name, uri):
# Setup log
recorder_root_dir = R.get_recorder().get_local_dir()
log_file = os.path.join(recorder_root_dir, "{:}.log".format(experiment_name))
set_log_basic_config(log_file)
logger = get_module_logger("q.run_exp")
logger.info("task_config::\n{:}".format(pprint.pformat(task_config, indent=2)))
@@ -87,20 +98,29 @@ def run_exp(task_config, dataset, experiment_name, recorder_name, uri):
logger.info("dataset={:}".format(dataset))
# Train model
R.log_params(**flatten_dict(task_config))
if "save_path" in inspect.getfullargspec(model.fit).args:
model_fit_kwargs["save_path"] = os.path.join(recorder_root_dir, "model.ckp")
elif "save_dir" in inspect.getfullargspec(model.fit).args:
model_fit_kwargs["save_dir"] = os.path.join(recorder_root_dir, "model-ckps")
model.fit(**model_fit_kwargs)
try:
model = R.load_object(model_obj_name)
logger.info("[Find existing object from {:}]".format(model_obj_name))
except OSError:
R.log_params(**flatten_dict(task_config))
if "save_path" in inspect.getfullargspec(model.fit).args:
model_fit_kwargs["save_path"] = os.path.join(
recorder_root_dir, "model.ckp"
)
elif "save_dir" in inspect.getfullargspec(model.fit).args:
model_fit_kwargs["save_dir"] = os.path.join(
recorder_root_dir, "model-ckps"
)
model.fit(**model_fit_kwargs)
R.save_objects(**{model_obj_name: model})
except:
raise ValueError("Something wrong.")
# Get the recorder
recorder = R.get_recorder()
R.save_objects(**{"model.pkl": model})
# Generate records: prediction, backtest, and analysis
import pdb; pdb.set_trace()
for record in task_config["record"]:
record = record.copy()
record = deepcopy(record)
if record["class"] == "SignalRecord":
srconf = {"model": model, "dataset": dataset, "recorder": recorder}
record["kwargs"].update(srconf)