Update baselines

This commit is contained in:
D-X-Y
2021-05-27 23:27:15 +08:00
parent 0070e54869
commit 33ea7ca87a
4 changed files with 263 additions and 32 deletions

View File

@@ -72,10 +72,11 @@ def main(args):
"This task ({:}) is not supported.".format(all_env.meta_info["task"])
)
seq_length = 10
seq_times = env.get_seq_times(0, seq_length)
seq_times = env.get_seq_times(0, args.seq_length)
_, (allxs, allys) = env.seq_call(seq_times)
allxs, allys = allxs.view(-1, 1), allys.view(-1, 1)
allxs, allys = allxs.view(-1, allxs.shape[-1]), allys.view(-1, 1)
if env.meta_info["task"] == "classification":
allys = allys.view(-1)
historical_x, historical_y = allxs.to(args.device), allys.to(args.device)
model = get_model(**model_kwargs)
@@ -83,28 +84,28 @@ def main(args):
optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, amsgrad=True)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
milestones=[
int(args.epochs * 0.25),
int(args.epochs * 0.5),
int(args.epochs * 0.75),
],
gamma=0.3,
)
optimizer,
milestones=[
int(args.epochs * 0.25),
int(args.epochs * 0.5),
int(args.epochs * 0.75),
],
gamma=0.3,
)
train_metric = metric_cls(True)
best_loss, best_param = None, None
for _iepoch in range(args.epochs):
preds = model(historical_x)
optimizer.zero_grad()
loss = criterion(preds, historical_y)
loss.backward()
optimizer.step()
lr_scheduler.step()
# save best
if best_loss is None or best_loss > loss.item():
best_loss = loss.item()
best_param = copy.deepcopy(model.state_dict())
preds = model(historical_x)
optimizer.zero_grad()
loss = criterion(preds, historical_y)
loss.backward()
optimizer.step()
lr_scheduler.step()
# save best
if best_loss is None or best_loss > loss.item():
best_loss = loss.item()
best_param = copy.deepcopy(model.state_dict())
model.load_state_dict(best_param)
model.analyze_weights()
with torch.no_grad():
@@ -126,7 +127,7 @@ def main(args):
+ need_time
)
# train the same data
# build optimizer
xmetric = ComposeMetric(metric_cls(True), SaveMetric())
future_x.to(args.device), future_y.to(args.device)
@@ -176,6 +177,9 @@ if __name__ == "__main__":
required=True,
help="The hidden dimension.",
)
parser.add_argument(
"--seq_length", type=int, default=10, help="The sequence length."
)
parser.add_argument(
"--init_lr",
type=float,
@@ -213,12 +217,11 @@ if __name__ == "__main__":
args.save_dir, args.hidden_dim, args.epochs, args.init_lr, args.env_version
)
if args.rand_seed is None or args.rand_seed < 0:
args.rand_seed = random.randint(1, 100000)
main(args)
else:
results = []
for iseed in range(3):
args.rand_seed = random.randint(1, 100000)
result = main(args)
results.append(result)
show_mean_var(result)
args.rand_seed = random.randint(1, 100000)
result = main(args)
results.append(result)
show_mean_var(results)
else:
main(args)