Update baselines
This commit is contained in:
@@ -72,10 +72,11 @@ def main(args):
|
||||
"This task ({:}) is not supported.".format(all_env.meta_info["task"])
|
||||
)
|
||||
|
||||
seq_length = 10
|
||||
seq_times = env.get_seq_times(0, seq_length)
|
||||
seq_times = env.get_seq_times(0, args.seq_length)
|
||||
_, (allxs, allys) = env.seq_call(seq_times)
|
||||
allxs, allys = allxs.view(-1, 1), allys.view(-1, 1)
|
||||
allxs, allys = allxs.view(-1, allxs.shape[-1]), allys.view(-1, 1)
|
||||
if env.meta_info["task"] == "classification":
|
||||
allys = allys.view(-1)
|
||||
|
||||
historical_x, historical_y = allxs.to(args.device), allys.to(args.device)
|
||||
model = get_model(**model_kwargs)
|
||||
@@ -83,28 +84,28 @@ def main(args):
|
||||
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, amsgrad=True)
|
||||
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
||||
optimizer,
|
||||
milestones=[
|
||||
int(args.epochs * 0.25),
|
||||
int(args.epochs * 0.5),
|
||||
int(args.epochs * 0.75),
|
||||
],
|
||||
gamma=0.3,
|
||||
)
|
||||
optimizer,
|
||||
milestones=[
|
||||
int(args.epochs * 0.25),
|
||||
int(args.epochs * 0.5),
|
||||
int(args.epochs * 0.75),
|
||||
],
|
||||
gamma=0.3,
|
||||
)
|
||||
|
||||
train_metric = metric_cls(True)
|
||||
best_loss, best_param = None, None
|
||||
for _iepoch in range(args.epochs):
|
||||
preds = model(historical_x)
|
||||
optimizer.zero_grad()
|
||||
loss = criterion(preds, historical_y)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
# save best
|
||||
if best_loss is None or best_loss > loss.item():
|
||||
best_loss = loss.item()
|
||||
best_param = copy.deepcopy(model.state_dict())
|
||||
preds = model(historical_x)
|
||||
optimizer.zero_grad()
|
||||
loss = criterion(preds, historical_y)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
# save best
|
||||
if best_loss is None or best_loss > loss.item():
|
||||
best_loss = loss.item()
|
||||
best_param = copy.deepcopy(model.state_dict())
|
||||
model.load_state_dict(best_param)
|
||||
model.analyze_weights()
|
||||
with torch.no_grad():
|
||||
@@ -126,7 +127,7 @@ def main(args):
|
||||
+ need_time
|
||||
)
|
||||
# train the same data
|
||||
|
||||
|
||||
# build optimizer
|
||||
xmetric = ComposeMetric(metric_cls(True), SaveMetric())
|
||||
future_x.to(args.device), future_y.to(args.device)
|
||||
@@ -176,6 +177,9 @@ if __name__ == "__main__":
|
||||
required=True,
|
||||
help="The hidden dimension.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--seq_length", type=int, default=10, help="The sequence length."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--init_lr",
|
||||
type=float,
|
||||
@@ -213,12 +217,11 @@ if __name__ == "__main__":
|
||||
args.save_dir, args.hidden_dim, args.epochs, args.init_lr, args.env_version
|
||||
)
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
main(args)
|
||||
else:
|
||||
results = []
|
||||
for iseed in range(3):
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
result = main(args)
|
||||
results.append(result)
|
||||
show_mean_var(result)
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
result = main(args)
|
||||
results.append(result)
|
||||
show_mean_var(results)
|
||||
else:
|
||||
main(args)
|
||||
|
Reference in New Issue
Block a user