|
|
|
@@ -1,7 +1,7 @@
|
|
|
|
|
#####################################################
|
|
|
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.02 #
|
|
|
|
|
############################################################################
|
|
|
|
|
# CUDA_VISIBLE_DEVICES=0 python exps/synthetic/baseline.py #
|
|
|
|
|
# CUDA_VISIBLE_DEVICES=0 python exps/LFNA/vis-synthetic.py #
|
|
|
|
|
############################################################################
|
|
|
|
|
import os, sys, copy, random
|
|
|
|
|
import torch
|
|
|
|
@@ -31,17 +31,19 @@ from datasets.synthetic_example import create_example_v1
|
|
|
|
|
from utils.temp_sync import optimize_fn, evaluate_fn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def draw_fig(save_dir, timestamp, scatter_list):
|
|
|
|
|
def draw_multi_fig(save_dir, timestamp, scatter_list, fig_title=None):
|
|
|
|
|
save_path = save_dir / "{:04d}".format(timestamp)
|
|
|
|
|
# print('Plot the figure at timestamp-{:} into {:}'.format(timestamp, save_path))
|
|
|
|
|
dpi, width, height = 40, 1500, 1500
|
|
|
|
|
dpi, width, height = 40, 2000, 1300
|
|
|
|
|
figsize = width / float(dpi), height / float(dpi)
|
|
|
|
|
LabelSize, LegendFontsize, font_gap = 80, 80, 5
|
|
|
|
|
|
|
|
|
|
fig = plt.figure(figsize=figsize)
|
|
|
|
|
if fig_title is not None:
|
|
|
|
|
fig.suptitle(fig_title, fontsize=LegendFontsize)
|
|
|
|
|
|
|
|
|
|
cur_ax = fig.add_subplot(1, 1, 1)
|
|
|
|
|
for scatter_dict in scatter_list:
|
|
|
|
|
for idx, scatter_dict in enumerate(scatter_list):
|
|
|
|
|
cur_ax = fig.add_subplot(len(scatter_list), 1, idx + 1)
|
|
|
|
|
cur_ax.scatter(
|
|
|
|
|
scatter_dict["xaxis"],
|
|
|
|
|
scatter_dict["yaxis"],
|
|
|
|
@@ -50,15 +52,15 @@ def draw_fig(save_dir, timestamp, scatter_list):
|
|
|
|
|
alpha=scatter_dict["alpha"],
|
|
|
|
|
label=scatter_dict["label"],
|
|
|
|
|
)
|
|
|
|
|
cur_ax.set_xlabel("X", fontsize=LabelSize)
|
|
|
|
|
cur_ax.set_ylabel("f(X)", rotation=0, fontsize=LabelSize)
|
|
|
|
|
cur_ax.set_xlim(-6, 6)
|
|
|
|
|
cur_ax.set_ylim(-40, 40)
|
|
|
|
|
for tick in cur_ax.xaxis.get_major_ticks():
|
|
|
|
|
tick.label.set_fontsize(LabelSize - font_gap)
|
|
|
|
|
tick.label.set_rotation(10)
|
|
|
|
|
for tick in cur_ax.yaxis.get_major_ticks():
|
|
|
|
|
tick.label.set_fontsize(LabelSize - font_gap)
|
|
|
|
|
cur_ax.set_xlabel("X", fontsize=LabelSize)
|
|
|
|
|
cur_ax.set_ylabel("f(X)", rotation=0, fontsize=LabelSize)
|
|
|
|
|
cur_ax.set_xlim(scatter_dict["xlim"][0], scatter_dict["xlim"][1])
|
|
|
|
|
cur_ax.set_ylim(scatter_dict["ylim"][0], scatter_dict["ylim"][1])
|
|
|
|
|
for tick in cur_ax.xaxis.get_major_ticks():
|
|
|
|
|
tick.label.set_fontsize(LabelSize - font_gap)
|
|
|
|
|
tick.label.set_rotation(10)
|
|
|
|
|
for tick in cur_ax.yaxis.get_major_ticks():
|
|
|
|
|
tick.label.set_fontsize(LabelSize - font_gap)
|
|
|
|
|
|
|
|
|
|
plt.legend(loc=1, fontsize=LegendFontsize)
|
|
|
|
|
fig.savefig(str(save_path) + ".pdf", dpi=dpi, bbox_inches="tight", format="pdf")
|
|
|
|
@@ -66,7 +68,7 @@ def draw_fig(save_dir, timestamp, scatter_list):
|
|
|
|
|
plt.close("all")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main(save_dir):
|
|
|
|
|
def compare_cl(save_dir):
|
|
|
|
|
save_dir = Path(str(save_dir))
|
|
|
|
|
save_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
|
dynamic_env, function = create_example_v1(100, num_per_task=1000)
|
|
|
|
@@ -74,6 +76,10 @@ def main(save_dir):
|
|
|
|
|
additional_xaxis = np.arange(-6, 6, 0.2)
|
|
|
|
|
models = dict()
|
|
|
|
|
|
|
|
|
|
cl_function = copy.deepcopy(function)
|
|
|
|
|
cl_function.set_timestamp(0)
|
|
|
|
|
cl_xaxis_all = None
|
|
|
|
|
|
|
|
|
|
for idx, (timestamp, dataset) in enumerate(tqdm(dynamic_env, ncols=50)):
|
|
|
|
|
xaxis_all = dataset[:, 0].numpy()
|
|
|
|
|
# xaxis_all = np.concatenate((additional_xaxis, xaxis_all))
|
|
|
|
@@ -81,51 +87,46 @@ def main(save_dir):
|
|
|
|
|
function.set_timestamp(timestamp)
|
|
|
|
|
yaxis_all = function.noise_call(xaxis_all)
|
|
|
|
|
|
|
|
|
|
# split the dataset
|
|
|
|
|
indexes = list(range(xaxis_all.shape[0]))
|
|
|
|
|
random.shuffle(indexes)
|
|
|
|
|
train_indexes = indexes[: len(indexes) // 2]
|
|
|
|
|
valid_indexes = indexes[len(indexes) // 2 :]
|
|
|
|
|
train_xs, train_ys = xaxis_all[train_indexes], yaxis_all[train_indexes]
|
|
|
|
|
valid_xs, valid_ys = xaxis_all[valid_indexes], yaxis_all[valid_indexes]
|
|
|
|
|
# create CL data
|
|
|
|
|
if cl_xaxis_all is None:
|
|
|
|
|
cl_xaxis_all = xaxis_all
|
|
|
|
|
else:
|
|
|
|
|
cl_xaxis_all = np.concatenate((cl_xaxis_all, xaxis_all + timestamp * 0.2))
|
|
|
|
|
cl_yaxis_all = cl_function(cl_xaxis_all)
|
|
|
|
|
|
|
|
|
|
model, loss_fn, train_loss = optimize_fn(train_xs, train_ys)
|
|
|
|
|
# model, loss_fn, train_loss = optimize_fn(xaxis_all, yaxis_all)
|
|
|
|
|
pred_valid_ys, valid_loss = evaluate_fn(model, valid_xs, valid_ys, loss_fn)
|
|
|
|
|
print(
|
|
|
|
|
"[{:03d}] T-{:03d}, train-loss={:.5f}, valid-loss={:.5f}".format(
|
|
|
|
|
idx, timestamp, train_loss, valid_loss
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# the first plot
|
|
|
|
|
scatter_list = []
|
|
|
|
|
scatter_list.append(
|
|
|
|
|
{
|
|
|
|
|
"xaxis": valid_xs,
|
|
|
|
|
"yaxis": valid_ys,
|
|
|
|
|
"xaxis": xaxis_all,
|
|
|
|
|
"yaxis": yaxis_all,
|
|
|
|
|
"color": "k",
|
|
|
|
|
"s": 10,
|
|
|
|
|
"alpha": 0.99,
|
|
|
|
|
"label": "Timestamp={:02d}".format(timestamp),
|
|
|
|
|
"xlim": (-6, 6),
|
|
|
|
|
"ylim": (-40, 40),
|
|
|
|
|
"label": "LFNA",
|
|
|
|
|
}
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
scatter_list.append(
|
|
|
|
|
{
|
|
|
|
|
"xaxis": valid_xs,
|
|
|
|
|
"yaxis": pred_valid_ys,
|
|
|
|
|
"xaxis": cl_xaxis_all,
|
|
|
|
|
"yaxis": cl_yaxis_all,
|
|
|
|
|
"color": "r",
|
|
|
|
|
"s": 10,
|
|
|
|
|
"alpha": 0.5,
|
|
|
|
|
"label": "MLP at now",
|
|
|
|
|
"xlim": (-6, 6 + timestamp * 0.2),
|
|
|
|
|
"ylim": (-200, 40),
|
|
|
|
|
"alpha": 0.99,
|
|
|
|
|
"label": "Continual Learning",
|
|
|
|
|
}
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
draw_fig(save_dir, timestamp, scatter_list)
|
|
|
|
|
draw_multi_fig(
|
|
|
|
|
save_dir, timestamp, scatter_list, "Timestamp={:03d}".format(timestamp)
|
|
|
|
|
)
|
|
|
|
|
print("Save all figures into {:}".format(save_dir))
|
|
|
|
|
save_dir = save_dir.resolve()
|
|
|
|
|
cmd = "ffmpeg -y -i {xdir}/%04d.png -pix_fmt yuv420p -vf fps=2 -vf scale=1000:1000 -vb 5000k {xdir}/vis.mp4".format(
|
|
|
|
|
cmd = "ffmpeg -y -i {xdir}/%04d.png -pix_fmt yuv420p -vf fps=2 -vf scale=1500:1000 -vb 5000k {xdir}/vis.mp4".format(
|
|
|
|
|
xdir=save_dir
|
|
|
|
|
)
|
|
|
|
|
os.system(cmd)
|
|
|
|
@@ -133,7 +134,7 @@ def main(save_dir):
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser("Baseline")
|
|
|
|
|
parser = argparse.ArgumentParser("Visualize synthetic data.")
|
|
|
|
|
parser.add_argument(
|
|
|
|
|
"--save_dir",
|
|
|
|
|
type=str,
|
|
|
|
@@ -142,4 +143,4 @@ if __name__ == "__main__":
|
|
|
|
|
)
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
|
|
main(args.save_dir)
|
|
|
|
|
compare_cl(os.path.join(args.save_dir, "compare-cl"))
|