Prototype generic nas model (cont.) for ENAS.
This commit is contained in:
@@ -20,6 +20,10 @@
|
||||
# python ./exps/algos-v2/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo random --rand_seed 777
|
||||
# python ./exps/algos-v2/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo random
|
||||
# python ./exps/algos-v2/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo random
|
||||
####
|
||||
# python ./exps/algos-v2/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo enas --arch_weight_decay 0 --arch_learning_rate 0.001 --arch_eps 0.001 --rand_seed 777
|
||||
# python ./exps/algos-v2/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo enas
|
||||
# python ./exps/algos-v2/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo enas
|
||||
######################################################################################
|
||||
import os, sys, time, random, argparse
|
||||
import numpy as np
|
||||
@@ -130,6 +134,11 @@ def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer
|
||||
network.set_cal_mode('joint', None)
|
||||
elif algo == 'random':
|
||||
network.set_cal_mode('urs', None)
|
||||
elif algo == 'enas':
|
||||
with torch.no_grad():
|
||||
network.controller.eval()
|
||||
_, _, sampled_arch = network.controller()
|
||||
network.set_cal_mode('dynamic', sampled_arch)
|
||||
else:
|
||||
raise ValueError('Invalid algo name : {:}'.format(algo))
|
||||
|
||||
@@ -153,16 +162,21 @@ def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer
|
||||
network.set_cal_mode('joint', None)
|
||||
elif algo == 'random':
|
||||
network.set_cal_mode('urs', None)
|
||||
else:
|
||||
elif algo != 'enas':
|
||||
raise ValueError('Invalid algo name : {:}'.format(algo))
|
||||
network.zero_grad()
|
||||
if algo == 'darts-v2':
|
||||
arch_loss, logits = backward_step_unrolled(network, criterion, base_inputs, base_targets, w_optimizer, arch_inputs, arch_targets)
|
||||
a_optimizer.step()
|
||||
elif algo == 'random' or algo == 'enas':
|
||||
with torch.no_grad():
|
||||
_, logits = network(arch_inputs)
|
||||
arch_loss = criterion(logits, arch_targets)
|
||||
else:
|
||||
_, logits = network(arch_inputs)
|
||||
arch_loss = criterion(logits, arch_targets)
|
||||
arch_loss.backward()
|
||||
a_optimizer.step()
|
||||
a_optimizer.step()
|
||||
# record
|
||||
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
|
||||
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
|
||||
@@ -182,6 +196,76 @@ def search_func(xloader, network, criterion, scheduler, w_optimizer, a_optimizer
|
||||
return base_losses.avg, base_top1.avg, base_top5.avg, arch_losses.avg, arch_top1.avg, arch_top5.avg
|
||||
|
||||
|
||||
def train_controller(xloader, network, criterion, optimizer, prev_baseline, epoch_str, print_freq, logger):
|
||||
# config. (containing some necessary arg)
|
||||
# baseline: The baseline score (i.e. average val_acc) from the previous epoch
|
||||
data_time, batch_time = AverageMeter(), AverageMeter()
|
||||
GradnormMeter, LossMeter, ValAccMeter, EntropyMeter, BaselineMeter, RewardMeter, xend = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), time.time()
|
||||
|
||||
controller_num_aggregate = 20
|
||||
controller_train_steps = 50
|
||||
controller_bl_dec = 0.99
|
||||
controller_entropy_weight = 0.0001
|
||||
|
||||
network.eval()
|
||||
network.controller.train()
|
||||
network.controller.zero_grad()
|
||||
loader_iter = iter(xloader)
|
||||
for step in range(controller_train_steps * controller_num_aggregate):
|
||||
try:
|
||||
inputs, targets = next(loader_iter)
|
||||
except:
|
||||
loader_iter = iter(xloader)
|
||||
inputs, targets = next(loader_iter)
|
||||
inputs = inputs.cuda(non_blocking=True)
|
||||
targets = targets.cuda(non_blocking=True)
|
||||
# measure data loading time
|
||||
data_time.update(time.time() - xend)
|
||||
|
||||
log_prob, entropy, sampled_arch = network.controller()
|
||||
with torch.no_grad():
|
||||
network.set_cal_mode('dynamic', sampled_arch)
|
||||
_, logits = network(inputs)
|
||||
val_top1, val_top5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
|
||||
val_top1 = val_top1.view(-1) / 100
|
||||
reward = val_top1 + controller_entropy_weight * entropy
|
||||
if prev_baseline is None:
|
||||
baseline = val_top1
|
||||
else:
|
||||
baseline = prev_baseline - (1 - controller_bl_dec) * (prev_baseline - reward)
|
||||
|
||||
loss = -1 * log_prob * (reward - baseline)
|
||||
|
||||
# account
|
||||
RewardMeter.update(reward.item())
|
||||
BaselineMeter.update(baseline.item())
|
||||
ValAccMeter.update(val_top1.item()*100)
|
||||
LossMeter.update(loss.item())
|
||||
EntropyMeter.update(entropy.item())
|
||||
|
||||
# Average gradient over controller_num_aggregate samples
|
||||
loss = loss / controller_num_aggregate
|
||||
loss.backward(retain_graph=True)
|
||||
|
||||
# measure elapsed time
|
||||
batch_time.update(time.time() - xend)
|
||||
xend = time.time()
|
||||
if (step+1) % controller_num_aggregate == 0:
|
||||
grad_norm = torch.nn.utils.clip_grad_norm_(network.controller.parameters(), 5.0)
|
||||
GradnormMeter.update(grad_norm)
|
||||
optimizer.step()
|
||||
network.controller.zero_grad()
|
||||
|
||||
if step % print_freq == 0:
|
||||
Sstr = '*Train-Controller* ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, controller_train_steps * controller_num_aggregate)
|
||||
Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time)
|
||||
Wstr = '[Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Reward {reward.val:.2f} ({reward.avg:.2f})] Baseline {basel.val:.2f} ({basel.avg:.2f})'.format(loss=LossMeter, top1=ValAccMeter, reward=RewardMeter, basel=BaselineMeter)
|
||||
Estr = 'Entropy={:.4f} ({:.4f})'.format(EntropyMeter.val, EntropyMeter.avg)
|
||||
logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Estr)
|
||||
|
||||
return LossMeter.avg, ValAccMeter.avg, BaselineMeter.avg, RewardMeter.avg
|
||||
|
||||
|
||||
def get_best_arch(xloader, network, n_samples, algo):
|
||||
with torch.no_grad():
|
||||
network.eval()
|
||||
@@ -192,6 +276,11 @@ def get_best_arch(xloader, network, n_samples, algo):
|
||||
elif algo.startswith('darts') or algo == 'gdas':
|
||||
arch = network.genotype
|
||||
archs, valid_accs = [arch], []
|
||||
elif algo == 'enas':
|
||||
archs, valid_accs = [], []
|
||||
for _ in range(n_samples):
|
||||
_, _, sampled_arch = network.controller()
|
||||
archs.append(sampled_arch)
|
||||
else:
|
||||
raise ValueError('Invalid algorithm name : {:}'.format(algo))
|
||||
loader_iter = iter(xloader)
|
||||
@@ -245,7 +334,7 @@ def main(xargs):
|
||||
|
||||
train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
|
||||
config = load_config(xargs.config_path, {'class_num': class_num, 'xshape': xshape}, logger)
|
||||
search_loader, _, valid_loader = get_nas_search_loaders(train_data, valid_data, xargs.dataset, 'configs/nas-benchmark/', \
|
||||
search_loader, train_loader, valid_loader = get_nas_search_loaders(train_data, valid_data, xargs.dataset, 'configs/nas-benchmark/', \
|
||||
(config.batch_size, config.test_batch_size), xargs.workers)
|
||||
logger.log('||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(search_loader), len(valid_loader), config.batch_size))
|
||||
logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
|
||||
@@ -263,7 +352,7 @@ def main(xargs):
|
||||
logger.log('{:}'.format(search_model))
|
||||
|
||||
w_optimizer, w_scheduler, criterion = get_optim_scheduler(search_model.weights, config)
|
||||
a_optimizer = torch.optim.Adam(search_model.alphas, lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay)
|
||||
a_optimizer = torch.optim.Adam(search_model.alphas, lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay, eps=xargs.arch_eps)
|
||||
logger.log('w-optimizer : {:}'.format(w_optimizer))
|
||||
logger.log('a-optimizer : {:}'.format(a_optimizer))
|
||||
logger.log('w-scheduler : {:}'.format(w_scheduler))
|
||||
@@ -288,6 +377,8 @@ def main(xargs):
|
||||
start_epoch = last_info['epoch']
|
||||
checkpoint = torch.load(last_info['last_checkpoint'])
|
||||
genotypes = checkpoint['genotypes']
|
||||
if xargs.algo == 'enas':
|
||||
baseline = checkpoint['baseline']
|
||||
valid_accuracies = checkpoint['valid_accuracies']
|
||||
search_model.load_state_dict( checkpoint['search_model'] )
|
||||
w_scheduler.load_state_dict ( checkpoint['w_scheduler'] )
|
||||
@@ -297,6 +388,7 @@ def main(xargs):
|
||||
else:
|
||||
logger.log("=> do not find the last-info file : {:}".format(last_info))
|
||||
start_epoch, valid_accuracies, genotypes = 0, {'best': -1}, {-1: network.return_topK(1, True)[0]}
|
||||
baseline = None
|
||||
|
||||
# start training
|
||||
start_time, search_time, epoch_time, total_epoch = time.time(), AverageMeter(), AverageMeter(), config.epochs + config.warmup
|
||||
@@ -312,9 +404,13 @@ def main(xargs):
|
||||
search_time.update(time.time() - start_time)
|
||||
logger.log('[{:}] search [base] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s'.format(epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum))
|
||||
logger.log('[{:}] search [arch] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, search_a_loss, search_a_top1, search_a_top5))
|
||||
if xargs.algo == 'enas':
|
||||
ctl_loss, ctl_acc, baseline, ctl_reward \
|
||||
= train_controller(valid_loader, network, criterion, a_optimizer, baseline, epoch_str, xargs.print_freq, logger)
|
||||
logger.log('[{:}] controller : loss={:}, acc={:}, baseline={:}, reward={:}'.format(epoch_str, ctl_loss, ctl_acc, baseline, ctl_reward))
|
||||
|
||||
genotype, temp_accuracy = get_best_arch(valid_loader, network, xargs.eval_candidate_num, xargs.algo)
|
||||
if xargs.algo == 'setn':
|
||||
if xargs.algo == 'setn' or xargs.algo == 'enas':
|
||||
network.set_cal_mode('dynamic', genotype)
|
||||
elif xargs.algo == 'gdas':
|
||||
network.set_cal_mode('gdas', None)
|
||||
@@ -333,6 +429,7 @@ def main(xargs):
|
||||
# save checkpoint
|
||||
save_path = save_checkpoint({'epoch' : epoch + 1,
|
||||
'args' : deepcopy(xargs),
|
||||
'baseline' : baseline,
|
||||
'search_model': search_model.state_dict(),
|
||||
'w_optimizer' : w_optimizer.state_dict(),
|
||||
'a_optimizer' : a_optimizer.state_dict(),
|
||||
@@ -377,7 +474,6 @@ def main(xargs):
|
||||
logger.close()
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser("Weight sharing NAS methods to search for cells.")
|
||||
parser.add_argument('--data_path' , type=str, help='Path to dataset')
|
||||
@@ -396,7 +492,8 @@ if __name__ == '__main__':
|
||||
parser.add_argument('--config_path' , type=str, default='./configs/nas-benchmark/algos/weight-sharing.config', help='The path of configuration.')
|
||||
# architecture leraning rate
|
||||
parser.add_argument('--arch_learning_rate', type=float, default=3e-4, help='learning rate for arch encoding')
|
||||
parser.add_argument('--arch_weight_decay', type=float, default=1e-3, help='weight decay for arch encoding')
|
||||
parser.add_argument('--arch_weight_decay' , type=float, default=1e-3, help='weight decay for arch encoding')
|
||||
parser.add_argument('--arch_eps' , type=float, default=1e-8, help='weight decay for arch encoding')
|
||||
parser.add_argument('--drop_path_rate' , type=float, help='The drop path rate.')
|
||||
# log
|
||||
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
|
||||
|
Reference in New Issue
Block a user