Add simple baseline for LFNA

This commit is contained in:
D-X-Y
2021-04-29 16:30:47 +08:00
parent 2c56938ee7
commit 14905d0011
8 changed files with 296 additions and 307 deletions

View File

@@ -11,270 +11,109 @@ lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint
from log_utils import AverageMeter, time_string, convert_secs2time
from log_utils import time_string
from procedures.advanced_main import basic_train_fn, basic_eval_fn
from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
from datasets.synthetic_core import get_synthetic_env
from models.xcore import get_model
def main(args):
torch.set_num_threads(args.workers)
prepare_seed(args.rand_seed)
logger = prepare_logger(args)
dynamic_env = get_synthetic_env()
historical_x, historical_y = None, None
for idx, (timestamp, (allx, ally)) in enumerate(dynamic_env):
import pdb
pdb.set_trace()
train_data, valid_data, xshape, class_num = get_datasets(
args.dataset, args.data_path, args.cutout_length
)
train_loader = torch.utils.data.DataLoader(
train_data,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.workers,
pin_memory=True,
)
valid_loader = torch.utils.data.DataLoader(
valid_data,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.workers,
pin_memory=True,
)
# get configures
model_config = load_config(args.model_config, {"class_num": class_num}, logger)
optim_config = load_config(args.optim_config, {"class_num": class_num}, logger)
if historical_x is not None:
mean, std = historical_x.mean().item(), historical_x.std().item()
else:
mean, std = 0, 1
model_kwargs = dict(input_dim=1, output_dim=1, mean=mean, std=std)
model = get_model(dict(model_type="simple_mlp"), **model_kwargs)
if args.model_source == "normal":
base_model = obtain_model(model_config)
elif args.model_source == "nas":
base_model = obtain_nas_infer_model(model_config, args.extra_model_path)
elif args.model_source == "autodl-searched":
base_model = obtain_model(model_config, args.extra_model_path)
else:
raise ValueError("invalid model-source : {:}".format(args.model_source))
flop, param = get_model_infos(base_model, xshape)
logger.log("model ====>>>>:\n{:}".format(base_model))
logger.log("model information : {:}".format(base_model.get_message()))
logger.log("-" * 50)
logger.log(
"Params={:.2f} MB, FLOPs={:.2f} M ... = {:.2f} G".format(
param, flop, flop / 1e3
)
)
logger.log("-" * 50)
logger.log("train_data : {:}".format(train_data))
logger.log("valid_data : {:}".format(valid_data))
optimizer, scheduler, criterion = get_optim_scheduler(
base_model.parameters(), optim_config
)
logger.log("optimizer : {:}".format(optimizer))
logger.log("scheduler : {:}".format(scheduler))
logger.log("criterion : {:}".format(criterion))
last_info, model_base_path, model_best_path = (
logger.path("info"),
logger.path("model"),
logger.path("best"),
)
network, criterion = torch.nn.DataParallel(base_model).cuda(), criterion.cuda()
if last_info.exists(): # automatically resume from previous checkpoint
logger.log(
"=> loading checkpoint of the last-info '{:}' start".format(last_info)
)
last_infox = torch.load(last_info)
start_epoch = last_infox["epoch"] + 1
last_checkpoint_path = last_infox["last_checkpoint"]
if not last_checkpoint_path.exists():
logger.log(
"Does not find {:}, try another path".format(last_checkpoint_path)
# create the current data loader
if historical_x is not None:
train_dataset = torch.utils.data.TensorDataset(historical_x, historical_y)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.workers,
)
last_checkpoint_path = (
last_info.parent
/ last_checkpoint_path.parent.name
/ last_checkpoint_path.name
optimizer = torch.optim.Adam(
model.parameters(), lr=args.init_lr, amsgrad=True
)
checkpoint = torch.load(last_checkpoint_path)
base_model.load_state_dict(checkpoint["base-model"])
scheduler.load_state_dict(checkpoint["scheduler"])
optimizer.load_state_dict(checkpoint["optimizer"])
valid_accuracies = checkpoint["valid_accuracies"]
max_bytes = checkpoint["max_bytes"]
logger.log(
"=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(
last_info, start_epoch
criterion = torch.nn.MSELoss()
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
milestones=[
int(args.epochs * 0.25),
int(args.epochs * 0.5),
int(args.epochs * 0.75),
],
gamma=0.3,
)
)
elif args.resume is not None:
assert Path(args.resume).exists(), "Can not find the resume file : {:}".format(
args.resume
)
checkpoint = torch.load(args.resume)
start_epoch = checkpoint["epoch"] + 1
base_model.load_state_dict(checkpoint["base-model"])
scheduler.load_state_dict(checkpoint["scheduler"])
optimizer.load_state_dict(checkpoint["optimizer"])
valid_accuracies = checkpoint["valid_accuracies"]
max_bytes = checkpoint["max_bytes"]
logger.log(
"=> loading checkpoint from '{:}' start with {:}-th epoch.".format(
args.resume, start_epoch
)
)
elif args.init_model is not None:
assert Path(
args.init_model
).exists(), "Can not find the initialization file : {:}".format(args.init_model)
checkpoint = torch.load(args.init_model)
base_model.load_state_dict(checkpoint["base-model"])
start_epoch, valid_accuracies, max_bytes = 0, {"best": -1}, {}
logger.log("=> initialize the model from {:}".format(args.init_model))
else:
logger.log("=> do not find the last-info file : {:}".format(last_info))
start_epoch, valid_accuracies, max_bytes = 0, {"best": -1}, {}
train_func, valid_func = get_procedures(args.procedure)
total_epoch = optim_config.epochs + optim_config.warmup
# Main Training and Evaluation Loop
start_time = time.time()
epoch_time = AverageMeter()
for epoch in range(start_epoch, total_epoch):
scheduler.update(epoch, 0.0)
need_time = "Time Left: {:}".format(
convert_secs2time(epoch_time.avg * (total_epoch - epoch), True)
)
epoch_str = "epoch={:03d}/{:03d}".format(epoch, total_epoch)
LRs = scheduler.get_lr()
find_best = False
# set-up drop-out ratio
if hasattr(base_model, "update_drop_path"):
base_model.update_drop_path(
model_config.drop_path_prob * epoch / total_epoch
)
logger.log(
"\n***{:s}*** start {:s} {:s}, LR=[{:.6f} ~ {:.6f}], scheduler={:}".format(
time_string(), epoch_str, need_time, min(LRs), max(LRs), scheduler
)
)
# train for one epoch
train_loss, train_acc1, train_acc5 = train_func(
train_loader,
network,
criterion,
scheduler,
optimizer,
optim_config,
epoch_str,
args.print_freq,
logger,
)
# log the results
logger.log(
"***{:s}*** TRAIN [{:}] loss = {:.6f}, accuracy-1 = {:.2f}, accuracy-5 = {:.2f}".format(
time_string(), epoch_str, train_loss, train_acc1, train_acc5
)
)
# evaluate the performance
if (epoch % args.eval_frequency == 0) or (epoch + 1 == total_epoch):
logger.log("-" * 150)
valid_loss, valid_acc1, valid_acc5 = valid_func(
valid_loader,
network,
criterion,
optim_config,
epoch_str,
args.print_freq_eval,
logger,
)
valid_accuracies[epoch] = valid_acc1
logger.log(
"***{:s}*** VALID [{:}] loss = {:.6f}, accuracy@1 = {:.2f}, accuracy@5 = {:.2f} | Best-Valid-Acc@1={:.2f}, Error@1={:.2f}".format(
time_string(),
epoch_str,
valid_loss,
valid_acc1,
valid_acc5,
valid_accuracies["best"],
100 - valid_accuracies["best"],
for _iepoch in range(args.epochs):
results = basic_train_fn(
train_loader, model, criterion, optimizer, MSEMetric(), logger
)
)
if valid_acc1 > valid_accuracies["best"]:
valid_accuracies["best"] = valid_acc1
find_best = True
logger.log(
"Currently, the best validation accuracy found at {:03d}-epoch :: acc@1={:.2f}, acc@5={:.2f}, error@1={:.2f}, error@5={:.2f}, save into {:}.".format(
epoch,
valid_acc1,
valid_acc5,
100 - valid_acc1,
100 - valid_acc5,
model_best_path,
lr_scheduler.step()
if _iepoch % args.log_per_epoch == 0:
log_str = (
"[{:}]".format(time_string())
+ " [{:04d}/{:04d}][{:04d}/{:04d}]".format(
idx, len(dynamic_env), _iepoch, args.epochs
)
+ " mse: {:.5f}, lr: {:.4f}".format(
results["mse"], min(lr_scheduler.get_last_lr())
)
)
)
num_bytes = (
torch.cuda.max_memory_cached(next(network.parameters()).device) * 1.0
)
logger.log(log_str)
results = basic_eval_fn(train_loader, model, MSEMetric(), logger)
logger.log(
"[GPU-Memory-Usage on {:} is {:} bytes, {:.2f} KB, {:.2f} MB, {:.2f} GB.]".format(
next(network.parameters()).device,
int(num_bytes),
num_bytes / 1e3,
num_bytes / 1e6,
num_bytes / 1e9,
"[{:}] [{:04d}/{:04d}] train-mse: {:.5f}".format(
time_string(), idx, len(dynamic_env), results["mse"]
)
)
max_bytes[epoch] = num_bytes
if epoch % 10 == 0:
torch.cuda.empty_cache()
# save checkpoint
save_path = save_checkpoint(
{
"epoch": epoch,
"args": deepcopy(args),
"max_bytes": deepcopy(max_bytes),
"FLOP": flop,
"PARAM": param,
"valid_accuracies": deepcopy(valid_accuracies),
"model-config": model_config._asdict(),
"optim-config": optim_config._asdict(),
"base-model": base_model.state_dict(),
"scheduler": scheduler.state_dict(),
"optimizer": optimizer.state_dict(),
},
model_base_path,
logger,
metric = ComposeMetric(MSEMetric(), SaveMetric())
eval_dataset = torch.utils.data.TensorDataset(allx, ally)
eval_loader = torch.utils.data.DataLoader(
eval_dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.workers,
)
if find_best:
copy_checkpoint(model_base_path, model_best_path, logger)
last_info = save_checkpoint(
{
"epoch": epoch,
"args": deepcopy(args),
"last_checkpoint": save_path,
},
logger.path("info"),
results = basic_eval_fn(eval_loader, model, metric, logger)
log_str = (
"[{:}]".format(time_string())
+ " [{:04d}/{:04d}]".format(idx, len(dynamic_env))
+ " eval-mse: {:.5f}".format(results["mse"])
)
logger.log(log_str)
save_path = logger.path(None) / "{:04d}-{:04d}.pth".format(
idx, len(dynamic_env)
)
save_checkpoint(
{"model": model.state_dict(), "index": idx, "timestamp": timestamp},
save_path,
logger,
)
# measure elapsed time
epoch_time.update(time.time() - start_time)
start_time = time.time()
# Update historical data
if historical_x is None:
historical_x, historical_y = allx, ally
else:
historical_x, historical_y = torch.cat((historical_x, allx)), torch.cat(
(historical_y, ally)
)
logger.log("")
logger.log("\n" + "-" * 200)
logger.log(
"Finish training/validation in {:} with Max-GPU-Memory of {:.2f} MB, and save final checkpoint into {:}".format(
convert_secs2time(epoch_time.sum, True),
max(v for k, v in max_bytes.items()) / 1e6,
logger.path("info"),
)
)
logger.log("-" * 200 + "\n")
logger.close()
@@ -287,11 +126,35 @@ if __name__ == "__main__":
default="./outputs/lfna-synthetic/use-all-past-data",
help="The checkpoint directory.",
)
parser.add_argument(
"--init_lr",
type=float,
default=0.1,
help="The initial learning rate for the optimizer (default is Adam)",
)
parser.add_argument(
"--batch_size",
type=int,
default=256,
help="The batch size",
)
parser.add_argument(
"--epochs",
type=int,
default=2000,
help="The total number of epochs.",
)
parser.add_argument(
"--log_per_epoch",
type=int,
default=200,
help="Log the training information per __ epochs.",
)
parser.add_argument(
"--workers",
type=int,
default=8,
help="number of data loading workers (default: 8)",
default=4,
help="The number of data loading workers (default: 4)",
)
# Random Seed
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")