init
This commit is contained in:
66
lib/nas_rnn/utils.py
Normal file
66
lib/nas_rnn/utils.py
Normal file
@@ -0,0 +1,66 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import os, shutil
|
||||
import numpy as np
|
||||
|
||||
|
||||
def repackage_hidden(h):
|
||||
if isinstance(h, torch.Tensor):
|
||||
return h.detach()
|
||||
else:
|
||||
return tuple(repackage_hidden(v) for v in h)
|
||||
|
||||
|
||||
def batchify(data, bsz, use_cuda):
|
||||
nbatch = data.size(0) // bsz
|
||||
data = data.narrow(0, 0, nbatch * bsz)
|
||||
data = data.view(bsz, -1).t().contiguous()
|
||||
if use_cuda: return data.cuda()
|
||||
else : return data
|
||||
|
||||
|
||||
def get_batch(source, i, seq_len):
|
||||
seq_len = min(seq_len, len(source) - 1 - i)
|
||||
data = source[i:i+seq_len].clone()
|
||||
target = source[i+1:i+1+seq_len].clone()
|
||||
return data, target
|
||||
|
||||
|
||||
|
||||
def embedded_dropout(embed, words, dropout=0.1, scale=None):
|
||||
if dropout:
|
||||
mask = embed.weight.data.new().resize_((embed.weight.size(0), 1)).bernoulli_(1 - dropout).expand_as(embed.weight) / (1 - dropout)
|
||||
mask.requires_grad_(True)
|
||||
masked_embed_weight = mask * embed.weight
|
||||
else:
|
||||
masked_embed_weight = embed.weight
|
||||
if scale:
|
||||
masked_embed_weight = scale.expand_as(masked_embed_weight) * masked_embed_weight
|
||||
|
||||
padding_idx = embed.padding_idx
|
||||
if padding_idx is None:
|
||||
padding_idx = -1
|
||||
X = torch.nn.functional.embedding(
|
||||
words, masked_embed_weight,
|
||||
padding_idx, embed.max_norm, embed.norm_type,
|
||||
embed.scale_grad_by_freq, embed.sparse)
|
||||
return X
|
||||
|
||||
|
||||
class LockedDropout(nn.Module):
|
||||
def __init__(self):
|
||||
super(LockedDropout, self).__init__()
|
||||
|
||||
def forward(self, x, dropout=0.5):
|
||||
if not self.training or not dropout:
|
||||
return x
|
||||
m = x.data.new(1, x.size(1), x.size(2)).bernoulli_(1 - dropout)
|
||||
mask = m.div_(1 - dropout).detach()
|
||||
mask = mask.expand_as(x)
|
||||
return mask * x
|
||||
|
||||
|
||||
def mask2d(B, D, keep_prob, cuda=True):
|
||||
m = torch.floor(torch.rand(B, D) + keep_prob) / keep_prob
|
||||
if cuda: return m.cuda()
|
||||
else : return m
|
Reference in New Issue
Block a user