update GDAS
This commit is contained in:
@@ -19,7 +19,7 @@ from aa_nas_api import AANASBenchAPI
|
||||
from R_EA import train_and_eval, random_architecture_func
|
||||
|
||||
|
||||
def main(xargs):
|
||||
def main(xargs, nas_bench):
|
||||
assert torch.cuda.is_available(), 'CUDA is not available.'
|
||||
torch.backends.cudnn.enabled = True
|
||||
torch.backends.cudnn.benchmark = False
|
||||
@@ -51,12 +51,6 @@ def main(xargs):
|
||||
search_space = get_search_spaces('cell', xargs.search_space_name)
|
||||
random_arch = random_architecture_func(xargs.max_nodes, search_space)
|
||||
#x =random_arch() ; y = mutate_arch(x)
|
||||
if xargs.arch_nas_dataset is None or not os.path.isfile(xargs.arch_nas_dataset):
|
||||
logger.log('Can not find the architecture dataset : {:}.'.format(xargs.arch_nas_dataset))
|
||||
nas_bench = None
|
||||
else:
|
||||
logger.log('{:} build NAS-Benchmark-API from {:}'.format(time_string(), xargs.arch_nas_dataset))
|
||||
nas_bench = AANASBenchAPI(xargs.arch_nas_dataset)
|
||||
logger.log('{:} use nas_bench : {:}'.format(time_string(), nas_bench))
|
||||
best_arch, best_acc = None, -1
|
||||
for idx in range(xargs.random_num):
|
||||
@@ -67,13 +61,12 @@ def main(xargs):
|
||||
logger.log('[{:03d}/{:03d}] : {:} : accuracy = {:.2f}%'.format(idx, xargs.random_num, arch, accuracy))
|
||||
logger.log('{:} best arch is {:}, accuracy = {:.2f}%'.format(time_string(), best_arch, best_acc))
|
||||
|
||||
if nas_bench is not None:
|
||||
info = nas_bench.query_by_arch( best_arch )
|
||||
if info is None: logger.log('Did not find this architecture : {:}.'.format(best_arch))
|
||||
else : logger.log('{:}'.format(info))
|
||||
info = nas_bench.query_by_arch( best_arch )
|
||||
if info is None: logger.log('Did not find this architecture : {:}.'.format(best_arch))
|
||||
else : logger.log('{:}'.format(info))
|
||||
logger.log('-'*100)
|
||||
|
||||
logger.close()
|
||||
return logger.log_dir, nas_bench.query_index_by_arch( best_arch )
|
||||
|
||||
|
||||
|
||||
@@ -94,5 +87,19 @@ if __name__ == '__main__':
|
||||
parser.add_argument('--print_freq', type=int, help='print frequency (default: 200)')
|
||||
parser.add_argument('--rand_seed', type=int, help='manual seed')
|
||||
args = parser.parse_args()
|
||||
if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000)
|
||||
main(args)
|
||||
#if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000)
|
||||
if args.arch_nas_dataset is None or not os.path.isfile(args.arch_nas_dataset):
|
||||
nas_bench = None
|
||||
else:
|
||||
print ('{:} build NAS-Benchmark-API from {:}'.format(time_string(), args.arch_nas_dataset))
|
||||
nas_bench = AANASBenchAPI(args.arch_nas_dataset)
|
||||
if args.rand_seed < 0:
|
||||
save_dir, all_indexes, num = None, [], 500
|
||||
for i in range(num):
|
||||
print ('{:} : {:03d}/{:03d}'.format(time_string(), i, num))
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
save_dir, index = main(args, nas_bench)
|
||||
all_indexes.append( index )
|
||||
torch.save(all_indexes, save_dir / 'results.pth')
|
||||
else:
|
||||
main(args, nas_bench)
|
||||
|
Reference in New Issue
Block a user