import os
os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1'
import argparse
import torch
import torch.nn as nn
import numpy as np
import pandas as pd
from scipy import stats
from src.utils.utilities import *
from src.metrics.swap import SWAP
from src.datasets.utilities import get_datasets
from src.search_space.networks import *
import time

# NASBench-201
from nas_201_api import NASBench201API as API

# xautodl
from xautodl.models import get_cell_based_tiny_net

# initalize nasbench-201
nas_201_path = 'datasets/NAS-Bench-201-v1_1-096897.pth'
print(f'Loading NAS-Bench-201 from {nas_201_path}')
start_time = time.time()
api = API(nas_201_path)
end_time = time.time()
print(f'Loaded NAS-Bench-201 in {end_time - start_time:.2f} seconds')

# Settings for console outputs
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
warnings.simplefilter(action='ignore', category=UserWarning)

parser = argparse.ArgumentParser()

# general setting
parser.add_argument('--data_path', default="datasets", type=str, nargs='?', help='path to the image dataset (datasets or datasets/ILSVRC/Data/CLS-LOC)')
parser.add_argument('--seed', default=0, type=int, help='random seed')
parser.add_argument('--device', default="cuda", type=str, nargs='?', help='setup device (cpu, mps or cuda)')
parser.add_argument('--repeats', default=32, type=int, nargs='?', help='times of calculating the training-free metric')
parser.add_argument('--input_samples', default=16, type=int, nargs='?', help='input batch size for training-free metric')

args = parser.parse_args()

if __name__ == "__main__":
    
    device = torch.device(args.device)

    # arch_info = pd.read_csv(args.data_path+'/DARTS_archs_CIFAR10.csv', names=['genotype', 'valid_acc'], sep=',')
    
    train_data, _, _ = get_datasets('cifar10', args.data_path, (args.input_samples, 3, 32, 32), -1)
    train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.input_samples, num_workers=0, pin_memory=True)
    loader = iter(train_loader)
    inputs, _ = next(loader)  

    results = []

    nasbench_len = 15625
    
    # for index, i in arch_info.iterrows():
    for i in range(nasbench_len):
        # print(f'Evaluating network: {index}')
        print(f'Evaluating network: {i}')

        config = api.get_net_config(i, 'cifar10')
        network = get_cell_based_tiny_net(config)
        nas_results = api.query_by_index(i, 'cifar10')
        acc = nas_results[111].get_eval('ori-test')

        print(type(network))
        start_time = time.time()

        # network = Network(3, 10, 1, eval(i.genotype))
        network = network.to(device)
        
        end_time = time.time()
        print(f'Loaded network in {end_time - start_time:.2f} seconds')

        print(f'initiliazing SWAP')
        swap = SWAP(model=network, inputs=inputs, device=device, seed=args.seed)

        swap_score = []

        print(f'Calculating SWAP score')
        start_time = time.time()
        for i in range(args.repeats):
            print(f'Iteration: {i+1}/{args.repeats}', end='\r')
            network = network.apply(network_weight_gaussian_init)
            swap.reinit()
            swap_score.append(swap.forward())
            swap.clear()
        end_time = time.time()
        print(f'Average SWAP score: {np.mean(swap_score)}')
        print(f'Elapsed time: {end_time - start_time:.2f} seconds')

        results.append([np.mean(swap_score), acc])

    results = pd.DataFrame(results, columns=['swap_score', 'valid_acc'])
    print()    
    print(f'Spearman\'s Correlation Coefficient: {stats.spearmanr(results.swap_score, results.valid_acc)[0]}')