add autodl
This commit is contained in:
150
AutoDL-Projects/xautodl/procedures/q_exps.py
Normal file
150
AutoDL-Projects/xautodl/procedures/q_exps.py
Normal file
@@ -0,0 +1,150 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.02 #
|
||||
#####################################################
|
||||
|
||||
import inspect
|
||||
import os
|
||||
import pprint
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
|
||||
import qlib
|
||||
from qlib.utils import init_instance_by_config
|
||||
from qlib.workflow import R
|
||||
from qlib.utils import flatten_dict
|
||||
from qlib.log import get_module_logger
|
||||
|
||||
|
||||
def set_log_basic_config(filename=None, format=None, level=None):
|
||||
"""
|
||||
Set the basic configuration for the logging system.
|
||||
See details at https://docs.python.org/3/library/logging.html#logging.basicConfig
|
||||
:param filename: str or None
|
||||
The path to save the logs.
|
||||
:param format: the logging format
|
||||
:param level: int
|
||||
:return: Logger
|
||||
Logger object.
|
||||
"""
|
||||
from qlib.config import C
|
||||
|
||||
if level is None:
|
||||
level = C.logging_level
|
||||
|
||||
if format is None:
|
||||
format = C.logging_config["formatters"]["logger_format"]["format"]
|
||||
|
||||
# Remove all handlers associated with the root logger object.
|
||||
for handler in logging.root.handlers[:]:
|
||||
logging.root.removeHandler(handler)
|
||||
logging.basicConfig(filename=filename, format=format, level=level)
|
||||
|
||||
|
||||
def update_gpu(config, gpu):
|
||||
config = deepcopy(config)
|
||||
if "task" in config and "model" in config["task"]:
|
||||
if "GPU" in config["task"]["model"]:
|
||||
config["task"]["model"]["GPU"] = gpu
|
||||
elif (
|
||||
"kwargs" in config["task"]["model"]
|
||||
and "GPU" in config["task"]["model"]["kwargs"]
|
||||
):
|
||||
config["task"]["model"]["kwargs"]["GPU"] = gpu
|
||||
elif "model" in config:
|
||||
if "GPU" in config["model"]:
|
||||
config["model"]["GPU"] = gpu
|
||||
elif "kwargs" in config["model"] and "GPU" in config["model"]["kwargs"]:
|
||||
config["model"]["kwargs"]["GPU"] = gpu
|
||||
elif "kwargs" in config and "GPU" in config["kwargs"]:
|
||||
config["kwargs"]["GPU"] = gpu
|
||||
elif "GPU" in config:
|
||||
config["GPU"] = gpu
|
||||
return config
|
||||
|
||||
|
||||
def update_market(config, market):
|
||||
config = deepcopy(config.copy())
|
||||
config["market"] = market
|
||||
config["data_handler_config"]["instruments"] = market
|
||||
return config
|
||||
|
||||
|
||||
def run_exp(
|
||||
task_config,
|
||||
dataset,
|
||||
experiment_name,
|
||||
recorder_name,
|
||||
uri,
|
||||
model_obj_name="model.pkl",
|
||||
):
|
||||
|
||||
model = init_instance_by_config(task_config["model"])
|
||||
model_fit_kwargs = dict(dataset=dataset)
|
||||
|
||||
# Let's start the experiment.
|
||||
with R.start(
|
||||
experiment_name=experiment_name,
|
||||
recorder_name=recorder_name,
|
||||
uri=uri,
|
||||
resume=True,
|
||||
):
|
||||
# Setup log
|
||||
recorder_root_dir = R.get_recorder().get_local_dir()
|
||||
log_file = os.path.join(recorder_root_dir, "{:}.log".format(experiment_name))
|
||||
|
||||
set_log_basic_config(log_file)
|
||||
logger = get_module_logger("q.run_exp")
|
||||
logger.info("task_config::\n{:}".format(pprint.pformat(task_config, indent=2)))
|
||||
logger.info("[{:}] - [{:}]: {:}".format(experiment_name, recorder_name, uri))
|
||||
logger.info("dataset={:}".format(dataset))
|
||||
|
||||
# Train model
|
||||
try:
|
||||
if hasattr(model, "to"): # Recoverable model
|
||||
ori_device = model.device
|
||||
model = R.load_object(model_obj_name)
|
||||
model.to(ori_device)
|
||||
else:
|
||||
model = R.load_object(model_obj_name)
|
||||
logger.info("[Find existing object from {:}]".format(model_obj_name))
|
||||
except OSError:
|
||||
R.log_params(**flatten_dict(update_gpu(task_config, None)))
|
||||
if "save_path" in inspect.getfullargspec(model.fit).args:
|
||||
model_fit_kwargs["save_path"] = os.path.join(
|
||||
recorder_root_dir, "model.ckp"
|
||||
)
|
||||
elif "save_dir" in inspect.getfullargspec(model.fit).args:
|
||||
model_fit_kwargs["save_dir"] = os.path.join(
|
||||
recorder_root_dir, "model-ckps"
|
||||
)
|
||||
model.fit(**model_fit_kwargs)
|
||||
# remove model to CPU for saving
|
||||
if hasattr(model, "to"):
|
||||
old_device = model.device
|
||||
model.to("cpu")
|
||||
R.save_objects(**{model_obj_name: model})
|
||||
model.to(old_device)
|
||||
else:
|
||||
R.save_objects(**{model_obj_name: model})
|
||||
except Exception as e:
|
||||
raise ValueError("Something wrong: {:}".format(e))
|
||||
# Get the recorder
|
||||
recorder = R.get_recorder()
|
||||
|
||||
# Generate records: prediction, backtest, and analysis
|
||||
for record in task_config["record"]:
|
||||
record = deepcopy(record)
|
||||
if record["class"] == "MultiSegRecord":
|
||||
record["kwargs"] = dict(model=model, dataset=dataset, recorder=recorder)
|
||||
sr = init_instance_by_config(record)
|
||||
sr.generate(**record["generate_kwargs"])
|
||||
elif record["class"] == "SignalRecord":
|
||||
srconf = {"model": model, "dataset": dataset, "recorder": recorder}
|
||||
record["kwargs"].update(srconf)
|
||||
sr = init_instance_by_config(record)
|
||||
sr.generate()
|
||||
else:
|
||||
rconf = {"recorder": recorder}
|
||||
record["kwargs"].update(rconf)
|
||||
ar = init_instance_by_config(record)
|
||||
ar.generate()
|
Reference in New Issue
Block a user