add autodl
This commit is contained in:
@@ -0,0 +1,102 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##############################################################################
|
||||
# Random Search and Reproducibility for Neural Architecture Search, UAI 2019 #
|
||||
##############################################################################
|
||||
import torch, random
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from ..cell_operations import ResNetBasicblock
|
||||
from .search_cells import NAS201SearchCell as SearchCell
|
||||
from .genotypes import Structure
|
||||
|
||||
|
||||
class TinyNetworkRANDOM(nn.Module):
|
||||
def __init__(
|
||||
self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats
|
||||
):
|
||||
super(TinyNetworkRANDOM, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
self.max_nodes = max_nodes
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C)
|
||||
)
|
||||
|
||||
layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N
|
||||
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
|
||||
|
||||
C_prev, num_edge, edge2index = C, None, None
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(
|
||||
zip(layer_channels, layer_reductions)
|
||||
):
|
||||
if reduction:
|
||||
cell = ResNetBasicblock(C_prev, C_curr, 2)
|
||||
else:
|
||||
cell = SearchCell(
|
||||
C_prev,
|
||||
C_curr,
|
||||
1,
|
||||
max_nodes,
|
||||
search_space,
|
||||
affine,
|
||||
track_running_stats,
|
||||
)
|
||||
if num_edge is None:
|
||||
num_edge, edge2index = cell.num_edges, cell.edge2index
|
||||
else:
|
||||
assert (
|
||||
num_edge == cell.num_edges and edge2index == cell.edge2index
|
||||
), "invalid {:} vs. {:}.".format(num_edge, cell.num_edges)
|
||||
self.cells.append(cell)
|
||||
C_prev = cell.out_dim
|
||||
self.op_names = deepcopy(search_space)
|
||||
self._Layer = len(self.cells)
|
||||
self.edge2index = edge2index
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
self.arch_cache = None
|
||||
|
||||
def get_message(self):
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += "\n {:02d}/{:02d} :: {:}".format(
|
||||
i, len(self.cells), cell.extra_repr()
|
||||
)
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return "{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
||||
|
||||
def random_genotype(self, set_cache):
|
||||
genotypes = []
|
||||
for i in range(1, self.max_nodes):
|
||||
xlist = []
|
||||
for j in range(i):
|
||||
node_str = "{:}<-{:}".format(i, j)
|
||||
op_name = random.choice(self.op_names)
|
||||
xlist.append((op_name, j))
|
||||
genotypes.append(tuple(xlist))
|
||||
arch = Structure(genotypes)
|
||||
if set_cache:
|
||||
self.arch_cache = arch
|
||||
return arch
|
||||
|
||||
def forward(self, inputs):
|
||||
|
||||
feature = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
if isinstance(cell, SearchCell):
|
||||
feature = cell.forward_dynamic(feature, self.arch_cache)
|
||||
else:
|
||||
feature = cell(feature)
|
||||
|
||||
out = self.lastact(feature)
|
||||
out = self.global_pooling(out)
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
return out, logits
|
Reference in New Issue
Block a user