add autodl
This commit is contained in:
206
AutoDL-Projects/exps/trading/workflow_tt.py
Normal file
206
AutoDL-Projects/exps/trading/workflow_tt.py
Normal file
@@ -0,0 +1,206 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.02 #
|
||||
#####################################################
|
||||
# Refer to:
|
||||
# - https://github.com/microsoft/qlib/blob/main/examples/workflow_by_code.ipynb
|
||||
# - https://github.com/microsoft/qlib/blob/main/examples/workflow_by_code.py
|
||||
# python exps/trading/workflow_tt.py --gpu 1 --market csi300
|
||||
#####################################################
|
||||
import yaml
|
||||
import argparse
|
||||
|
||||
from xautodl.procedures.q_exps import update_gpu
|
||||
from xautodl.procedures.q_exps import update_market
|
||||
from xautodl.procedures.q_exps import run_exp
|
||||
|
||||
import qlib
|
||||
from qlib.config import C
|
||||
from qlib.config import REG_CN
|
||||
from qlib.utils import init_instance_by_config
|
||||
from qlib.workflow import R
|
||||
|
||||
|
||||
def main(xargs):
|
||||
dataset_config = {
|
||||
"class": "DatasetH",
|
||||
"module_path": "qlib.data.dataset",
|
||||
"kwargs": {
|
||||
"handler": {
|
||||
"class": "Alpha360",
|
||||
"module_path": "qlib.contrib.data.handler",
|
||||
"kwargs": {
|
||||
"start_time": "2008-01-01",
|
||||
"end_time": "2020-08-01",
|
||||
"fit_start_time": "2008-01-01",
|
||||
"fit_end_time": "2014-12-31",
|
||||
"instruments": xargs.market,
|
||||
"infer_processors": [
|
||||
{
|
||||
"class": "RobustZScoreNorm",
|
||||
"kwargs": {"fields_group": "feature", "clip_outlier": True},
|
||||
},
|
||||
{"class": "Fillna", "kwargs": {"fields_group": "feature"}},
|
||||
],
|
||||
"learn_processors": [
|
||||
{"class": "DropnaLabel"},
|
||||
{"class": "CSRankNorm", "kwargs": {"fields_group": "label"}},
|
||||
],
|
||||
"label": ["Ref($close, -2) / Ref($close, -1) - 1"],
|
||||
},
|
||||
},
|
||||
"segments": {
|
||||
"train": ("2008-01-01", "2014-12-31"),
|
||||
"valid": ("2015-01-01", "2016-12-31"),
|
||||
"test": ("2017-01-01", "2020-08-01"),
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
model_config = {
|
||||
"class": "QuantTransformer",
|
||||
"module_path": "xautodl.trade_models.quant_transformer",
|
||||
"kwargs": {
|
||||
"net_config": None,
|
||||
"opt_config": None,
|
||||
"GPU": "0",
|
||||
"metric": "loss",
|
||||
},
|
||||
}
|
||||
|
||||
port_analysis_config = {
|
||||
"strategy": {
|
||||
"class": "TopkDropoutStrategy",
|
||||
"module_path": "qlib.contrib.strategy.strategy",
|
||||
"kwargs": {
|
||||
"topk": 50,
|
||||
"n_drop": 5,
|
||||
},
|
||||
},
|
||||
"backtest": {
|
||||
"verbose": False,
|
||||
"limit_threshold": 0.095,
|
||||
"account": 100000000,
|
||||
"benchmark": "SH000300",
|
||||
"deal_price": "close",
|
||||
"open_cost": 0.0005,
|
||||
"close_cost": 0.0015,
|
||||
"min_cost": 5,
|
||||
},
|
||||
}
|
||||
|
||||
record_config = [
|
||||
{
|
||||
"class": "SignalRecord",
|
||||
"module_path": "qlib.workflow.record_temp",
|
||||
"kwargs": dict(),
|
||||
},
|
||||
{
|
||||
"class": "SigAnaRecord",
|
||||
"module_path": "qlib.workflow.record_temp",
|
||||
"kwargs": dict(ana_long_short=False, ann_scaler=252),
|
||||
},
|
||||
{
|
||||
"class": "PortAnaRecord",
|
||||
"module_path": "qlib.workflow.record_temp",
|
||||
"kwargs": dict(config=port_analysis_config),
|
||||
},
|
||||
]
|
||||
|
||||
provider_uri = "~/.qlib/qlib_data/cn_data"
|
||||
qlib.init(provider_uri=provider_uri, region=REG_CN)
|
||||
|
||||
from qlib.utils import init_instance_by_config
|
||||
|
||||
xconfig = """
|
||||
model:
|
||||
class: SFM
|
||||
module_path: qlib.contrib.model.pytorch_sfm
|
||||
kwargs:
|
||||
d_feat: 6
|
||||
hidden_size: 64
|
||||
output_dim: 32
|
||||
freq_dim: 25
|
||||
dropout_W: 0.5
|
||||
dropout_U: 0.5
|
||||
n_epochs: 20
|
||||
lr: 1e-3
|
||||
batch_size: 1600
|
||||
early_stop: 20
|
||||
eval_steps: 5
|
||||
loss: mse
|
||||
optimizer: adam
|
||||
GPU: 0
|
||||
"""
|
||||
xconfig = """
|
||||
model:
|
||||
class: TabnetModel
|
||||
module_path: qlib.contrib.model.pytorch_tabnet
|
||||
kwargs:
|
||||
d_feat: 360
|
||||
pretrain: True
|
||||
"""
|
||||
xconfig = """
|
||||
model:
|
||||
class: GRU
|
||||
module_path: qlib.contrib.model.pytorch_gru
|
||||
kwargs:
|
||||
d_feat: 6
|
||||
hidden_size: 64
|
||||
num_layers: 4
|
||||
dropout: 0.0
|
||||
n_epochs: 200
|
||||
lr: 0.001
|
||||
early_stop: 20
|
||||
batch_size: 800
|
||||
metric: loss
|
||||
loss: mse
|
||||
GPU: 0
|
||||
"""
|
||||
xconfig = yaml.safe_load(xconfig)
|
||||
model = init_instance_by_config(xconfig["model"])
|
||||
from xautodl.utils.flop_benchmark import count_parameters_in_MB
|
||||
|
||||
# print(count_parameters_in_MB(model.tabnet_model))
|
||||
import pdb
|
||||
|
||||
pdb.set_trace()
|
||||
|
||||
save_dir = "{:}-{:}".format(xargs.save_dir, xargs.market)
|
||||
dataset = init_instance_by_config(dataset_config)
|
||||
for irun in range(xargs.times):
|
||||
xmodel_config = model_config.copy()
|
||||
xmodel_config = update_gpu(xmodel_config, xargs.gpu)
|
||||
task_config = dict(
|
||||
model=xmodel_config, dataset=dataset_config, record=record_config
|
||||
)
|
||||
|
||||
run_exp(
|
||||
task_config,
|
||||
dataset,
|
||||
xargs.name,
|
||||
"recorder-{:02d}-{:02d}".format(irun, xargs.times),
|
||||
save_dir,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser("Vanilla Transformable Transformer")
|
||||
parser.add_argument(
|
||||
"--save_dir",
|
||||
type=str,
|
||||
default="./outputs/vtt-runs",
|
||||
help="The checkpoint directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--name", type=str, default="Transformer", help="The experiment name."
|
||||
)
|
||||
parser.add_argument("--times", type=int, default=10, help="The repeated run times.")
|
||||
parser.add_argument(
|
||||
"--gpu", type=int, default=0, help="The GPU ID used for train / test."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--market", type=str, default="all", help="The market indicator."
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
main(args)
|
Reference in New Issue
Block a user